
Ulrich Reimer, Swiss Life 2.1-2

A. Meta-representation for formalized knowledge

Queries:

\Which regulations deal with the surrender of 3b contracts?"

\Which oÆce tasks are a�ected by a regulation and how?"

Independent representation of regulation:

8c : :9t : (contract(c) ^ type(c; 3b) ^ surrender-task(t)

^ object-of-surrender(t; c) ^ elapsed-time(c) < 3 years)

Another independent representation of regulation:

8c : (contract(c) ^ type(c; 3b)

^ (elapsed-time(c) � 3 years) possible-to-surrender(c))

Ulrich Reimer, Swiss Life 2.1-1

2.1 Meta-Level Representation

De�nition: Meta-X

Meta-X means X about X.

Make the inherent relationships between pieces of knowledge

visible by switching to a higher-level perspective.



Ulrich Reimer, Swiss Life 2.1-4

How to link the object level with the meta level?

De�nition: Naming Relation

A naming relation is a mapping from syntactic constructs in

the object language LO to variable-free terms in the

meta-language LM.

Ulrich Reimer, Swiss Life 2.1-3

Facts that cannot be derived within a theory but can be

asserted about the theory are meta-knowledge.

Axioms:

8x : (human(x) ) mortal(x)) (1)

8x : (mortal(x) ) fallible(x)) (2)

Inference Rule:
8x : (A) B) 8x : (B ) C)

8x : (A) C)

Within the theory the following theorem can be derived:

8x : (human(x) ) fallible(x)) (3)

About the theory something like the following can be stated:

8f : 9i; p1; p2 : f = mkforall(i;mkimp(appl(p1; i); appl(p2; i)))



Ulrich Reimer, Swiss Life 2.1-6

Example:

object sentence : p(f(x)) ^ q(g(x; y)) (1)

quotation name : dp(f(x)) ^ q(g(x; y))e (2)

structural name : p0(f 0(var1)) ^0 q0(g0(var1; var2)) (3)

To express that an object-level predicate is commutative:

8x : 8y : (prove(p0(x; y)) ) prove(p0(y; x)))

This, however, expresses something di�erent:

prove(d8x : 8y : (p(x; y) ) p(y; x))e)

Ulrich Reimer, Swiss Life 2.1-5

Two traditional types of naming relations:

Quotation mark names:

An object expression � 2 LO is written as the constant

d�e 2 LM

Structural descriptions:

Object expressions become complex terms of LM which

reect the syntactic structure of the object level expression.

A meta-theory can only refer to properties of object

expressions that are made visible on the meta-level through

the naming relation.



Ulrich Reimer, Swiss Life 2.1-8

Classically, names are similar if they denote similar syntactic

expressions.

But: we can also encode semantic aspects of expressions in

LO into their names in LM

Ulrich Reimer, Swiss Life 2.1-7

More naming relations:

object sentence : p(f(x)) ^ q(g(x; y)) (1)

another name : p0(func(f; [var1])) ^0 q0(func(g; [var1; var2])) (4)

and another : pred(p; [func(f; [var1])]) ^0

pred(q; [func(g; [var1; var2])]) (5)

yet another : logical-const(and; pred(p; [func(f; [var1])]);

pred(q; [func(g; [var1; var2])])) (6)

What is the additional expressiveness allowed by (4) to (6)?



Ulrich Reimer, Swiss Life 2.1-10

Let rule8 be a short name for the above term.

Then we can state on the meta level e.g.

regulation(rule8)

affects(rule8; surrender)

... or we can encode that into the name, too:

regulation(surrender, forall(concept(var1, contract),

neg(exists(concept(var2, surrender), type'(var1, 3b') ^0

object-of-surrender'(var2, var1) ^0

leq(elapsed-time'(var1), 3years')))))

Ulrich Reimer, Swiss Life 2.1-9

Example:

Regulation for dealing with the surrender of 3b contracts:

8c : :9t : (contract(c) ^ type(c; 3b) ^ surrender-task(t)

^ object-of-surrender(t; c) ^ elapsed-time(c) < 3years)

A possible name:

forall(var1, neg(exists(var2, contract'(var1) ^0 type'(var1, 3b')^0

surrender-task'(var2) ^0 object-of-surrender'(var2, var1) ^0

leq(elapsed-time'(var1), 3years'))))

Encode range of variables into their name:

forall(instance(var1, contract), neg(exists(instance(var2, surrender),

type'(var1, 3b') ^0 object-of-surrender'(var2, var1) ^0

leq(elapsed-time'(var1), 3years))))



Ulrich Reimer, Swiss Life 2.1-12

Meta-representation for semi-structured data is needed for

� searching information

� extracting information

� maintaining text sources

� automatic document generation/presentation

Ulrich Reimer, Swiss Life 2.1-11

B. Meta-representation for semi-structured data

HTML:

hHEADi

hMETA NAME=\Author" CONTENT=\Ulrich"i

h=HEADi

XML:

hBODYi

This page is written by

hAUTHORiUlrich Reimerh/AUTHORi

h=BODYi

RDF:

Author(http://research.swisslife.ch/~reimer)=Ulrich



Ulrich Reimer, Swiss Life 2.1-14

Element: Title

Name: Title

De�nition: A name given to the resource

Comment: A name by which the resource is formally known

Element: Creator

Name: Creator

De�nition: An entity primarily responsible for making the content of

the resource

Comment: Examples are a person, an organisation, a service

Element: Subject

Name: Subject and Keywords

De�nition: The topic of the content of the resource

Comment: A Subject will be given as keywords, key phrases or

classi�cation codes (preferably from a controlled vocabulary

or formal classi�cation scheme)

Ulrich Reimer, Swiss Life 2.1-13

Dublin Core: A meta-data standard for resource discovery

� resources are web-based, document-like objects

� de�nes 15 properties (\elements") a resource can have

� each property is de�ned using 10 attributes

(like name, de�nition, comment, version, obligation, etc.)

� widespread consensus

� enables

{ interoperability

{ cost-e�ective development of tools

(see http://purl.oclc.org/dc)



Ulrich Reimer, Swiss Life 2.1-15

Element: Description

Name: Description

De�nition: An account of the content of the resource

Comment: May be an abstract, table of contents

Element: Publisher

Name: Publisher

De�nition: An entity responsible for making the resource available

Comment: Examples are a person, an organisation, a service

Element: Date

Name: Date

De�nition: A date associated with an event in the life cycle of

the resource

Comment: Date will e.g. be associated with the creation, modi�cation,

availability, validity of the resource

etc.


