
Managing Complexity ofManaging Complexity of
Enterprise Information SystemsEnterprise Information Systems

International Conference on Enterprise Information Systems
14-17 April 2004, Porto, Portugal

Keynote Presentation

Leszek A. Maciaszek
Macquarie University, Sydney, Australia

www.comp.mq.edu.au/~leszek
© L.A.Maciaszek

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 22

Main pointsMain points
Measurably-supportable systems
Supportable system → dependency metrics
Architecture (hierarchy) that minimizes
(potential) dependencies
Dependencies on classes, messages, events,
inheritance
Proactive approach (architecture →
implementation) and reactive approach
(implementation → architecture)
Two aims of reactive approach:
• Conformance to the architecture
• Comparison of different implementations

Global supportability metrics (fuzzy logic?)
The issue of project management and
availability of managerial tools

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 33

ReferencesReferences
Maciaszek, L.A. (2001): Requirements Analysis and
System Design. Developing Information Systems
with UML, Addison-Wesley, 378p. {translated to
Chinese, Russian and Italian}
Maciaszek, L.A. (2004): Requirements Analysis and
Systems Design, 2nd ed., Addison-Wesley, ~630p.
(to appear Sept 2004)
• http://www.comp.mq.edu.au/books/rasd2ed/

Maciaszek, L.A. and Liong, B.L. (2004): Practical
Software Engineering. A Case-Study Approach,
Addison-Wesley, 829p. (to appear May 2004)
• http://www.comp.mq.edu.au/books/pse/

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 44

The trouble with a good many of us is that we come to a The trouble with a good many of us is that we come to a
conclusion before we arrive at the end. (F.J. Mills)conclusion before we arrive at the end. (F.J. Mills)

Hierarchical structures reduce complexity (Herb
Simon, 1962)
• complex – made up of a large number of parts that interact

in a non-simple way
A structure is stable if cohesion is strong and
coupling low (Larry Constantine, 1974)
• cohesion – intra-module communication
• coupling – inter-module interaction

Only what is hidden can be changed without risk
(David Parnas, 1972)
Separation of concerns leads to standard
architectures (Ernst Denert, 1991)
An evolving system increases its complexity unless
work is done to reduce it (Meir Lehman)

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 55

Size and complexitySize and complexity
Legacy systems
• Monolithic, processing sequential and predictable
• Complexity = size

Object systems
• Distributed, processing random and unpredictable
• Complexity in wires

–– “cost of glue code is three times cost of application code” (“cost of glue code is three times cost of application code” (EndresEndres, ,
RombachRombach, 2003), 2003)Package A

Package B

Package C

Package A

Package B

Package C

Package A

Package B

Package C

Package A

Package B

Package C

Facade pattern

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 66

Object systemsObject systems →→ newnew legacy systems?legacy systems?
Unsupportable system → legacy system
• software systems do not wear out; they only lose

relevance
Supportability = understandability + maintainability
+ scalability
Properties of complex systems that are
supportable:
• Take the form of hierarchy and composition of objects
• Intra-linkages of components stronger than inter-linkages
• Dynamic links legalized as static associations
• Complex systems that work are result of simple systems

that worked (evolution)
• “Evolution has a preference for hierarchical systems

because they are more stable when interrupted” (Endres,
Rombach, 2003)

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 77

Difficulties that we are facingDifficulties that we are facing

public void operXY2() {���
 super.operXY2()���
}

public void operX1() {�
 operXY1()�
}

public void operA1() {�
 XXX.operX1();�
 XXX.operXY2();�
}

XXX

+operX1()
+operXY1()
+operXY2()

YYY

+operXY1()
+operXY2()

AAA

-varA1 : XXX

+operA1()
super.operXY2()

<<up-call>>

XXX.operX1()

operXY1()

<<down-call>>

operXY2()

<<down-call>>

private varA1 = new YYY()

<<instantiate>>

XXX.operXY2()

Figure 1. Program dependencies

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 88

Application design objectivesApplication design objectives
a hierarchical layering of software modules
that reduces complexity and enhances
understandability of module dependencies
by disallowing direct object
intercommunication between non-
neighboring layers, and
an enforcement of programming standards
that make module dependencies visible in
compile-time program structures and that
forbid muddy programming solutions
utilizing just run-time program structures

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 99

ArchiteArchitecturecture

presentation
<<layer>>

control
<<layer>>

domain
<<layer>>

entity mediator

foundation
<<layer>>

Client Tier
applets, apps

user interaction, UI presentation

Presentation Tier
servlets, JSP

session management, content
management, format and delivery

Business Tier
EJB

business logic, transactions

Integration Tier
JDBC, JMS, Connectors, Legacy

resource adapters, external systems,
rules engines, workflow

Resource Tier
Databases, external systems

resources, data and external services

C
or

e
J2

EE
 p

at
te

rn
s

Core J2EE tiers PCMEF layers

presentation
<<layer>>

control
<<layer>>

domain
<<layer>>

entity mediator

foundation
<<layer>>

Client Tier
applets, apps

user interaction, UI presentation

Presentation Tier
servlets, JSP

session management, content
management, format and delivery

Business Tier
EJB

business logic, transactions

Integration Tier
JDBC, JMS, Connectors, Legacy

resource adapters, external systems,
rules engines, workflow

Resource Tier
Databases, external systems

resources, data and external services

C
or

e
J2

EE
 p

at
te

rn
s

Core J2EE tiers PCMEF layers

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 1010

...converting to PCMEF design...converting to PCMEF design

CControl

EEntityPPresentation FFoundation

MMediatorCControl

EEntityPPresentation FFoundation

MMediator

CControl EEntity

PPresentation

FFoundation

MMediator

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 1111

PCMEF subsystemsPCMEF subsystems
The presentation subsystem

• classes that handle the graphical user interface (GUI) and assist in
human-computer interactions.

The control subsystem
• classes capable to understand what program logic is

–– searching for information in entity objectssearching for information in entity objects
–– asking the mediator layer to bring entity objects to memory fromasking the mediator layer to bring entity objects to memory from the database.the database.

The entity subsystem
• manages business objects currently in memory
• container classes
• containers are linked

The mediator subsystem
• mediates between entity and foundation subsystems to ensure that

control gets access to business objects
• manages the memory cache and synchronizes the states of business

objects between memory and the database
The foundation subsystem

• classes that know how to talk to the database
• produces SQL to read and modify the database

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 1212

PCMEFPCMEF patternspatterns
PCMEF architecture is based on
some well-known design patterns
and on few new patterns specific to
PCMEF
Main source of patterns for PCMEF
are
• GoF (Gang of Four – [GAMM1995]),
• PEAA (Patterns of Enterprise

Application Architecture –
[FOWL2003])

• Core J2EE [ALUR2003]
Patterns particularly useful include:
MVC, Façade, Abstract Factory,
Chain of Responsibility, Observer,
Mediator, Identity Map, Data
Mapper, Lazy Load, OID Proxy.

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 1313

CNP, NCP, EAP, DDPCNP, NCP, EAP, DDP
CNP – class naming
• name of each class and each interface in the system should

identify the subsystem/package layer to which it belongs
• ensuring that each class begins with a single letter identifying the

PCMEF layer (i.e. P, C, etc.)
–– EVideoEVideo means that the class is in the entity subsystemmeans that the class is in the entity subsystem
–– IMVideoIMVideo means that the interface is in the mediator subsystemmeans that the interface is in the mediator subsystem

NCP – neighbor communication
• objects can communicate across layers only by using direct

neighbors
• chains of message passing

EAP – explicit association
• legitimizes run-time object communication in compile-time data

structures.
DDP – downward dependency
• higher PCMEF layers depend on lower layers
• lower layers should be designed to be more stable

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 1414

Chain of responsibility patternChain of responsibility pattern

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 1515

CEP CEP –– cycle eliminationcycle elimination

cyclic dependencies,
between classes and
other structures
(methods, packages,
subsystems)

unavoidable, but can be
neutralized

• extra classes to reduce
a network of calls to a
hierarchy

• purposeful use of
interfaces

public class CActioner{
 public void do4() {
 //perform some actions
 }
}

presentation
<<layer>>

control
<<layer>>

public class CInit {
 PPrimaryWindow window;
 public void do1() {
 window.do2();
 }
}

pu blic class PDial ogBox {
 CActione r acti oner;
 public vo id do3() {
 actioner.do4();
 }
}

CActioner

do4()

PDialogBox

do3()

PPrimaryWindow

do2()

CInit

do1()

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 1616

CEPCEP

presentation
<<layer>> control

<<layer>>

PPrimaryWindow

do2()

publ ic class CIni t {
 ICPresenter presenter;
 publ ic void do1(){
 presenter.do2();
 }
}

publ ic class PPrimaryWindow
implements control.ICPresenter {
 publ ic void do2() {
 //implementation code
 }
}

publ ic interface PControl ler {
 publ ic void do2();
}

ICPresenter

do2()

CInit

do1()

<<uses>>

CActioner

do4()

PDialogBox

do3()

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 1717

APP APP –– acquaintance packageacquaintance package
separate layer of
interfaces to support more
complex object
communication under
strict supportability
guidelines
subsystem of interfaces
only
• other objects in the

system can use these
interfaces, and pass
them in arguments to
method calls, instead of
concrete objects →
classes in non-
neighboring subsystems
can communicate
without knowing the
concrete suppliers of
services (and, therefore,
without creating
dependencies on
concrete classes).

<<subsystem>>
acquaintance

<<subsystem>>
presentation

<<subsystem>>
mediator

<<subsystem>>
entity

<<subsystem>>
control

<<subsystem>>
foundation

usage and implementation �
dependencies

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 1818

UNP UNP –– upward notificationupward notification
upward communication
that minimizes object
dependencies
lower layers rely on
interfaces and event
processing
(publisher/subscriber
protocols) to communicate
with objects in higher
layers

presentation

entity

PContactBrowser

displayContact()
processContactChange()

acquaintance

EContact

addContactListener()
fireContactChange()

IAContactSubscriber

processContactChange()

subject
(publisher)

observer
(subscriber)

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 1919

PCMEF conformance verificationPCMEF conformance verification
Architectural design takes a proactive approach to
managing dependencies in software.
• This is a forward-engineering approach – from design to

implementation.
• The aim is to deliver a software design that minimizes

dependencies by imposing an architectural solution on
programmers.

Proactive approach must be supported by the
reactive approach that aims at measuring
dependencies in implemented software.
• This is a reverse-engineering approach – from

implementation to design.
• The implementation may or may not conform to the

desired architectural design.
• The purpose is to show in numbers how much the

implemented system is worse than a PCMEF solution (or
other dependency-minimizing architecture)

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 2020

CCDCCD
DEFINITION: Cumulative Class Dependency (CCD) is the total supportability cost
over all classes Ci{i=1,…,n) in a system of the number of classes Cj(j<=1,…,n) to be
potentially changed in order to modify each class Ci.

Calculation of CCD assumes adherence to the
architectural framework.
If the framework is found to be broken, the CCD is
calculated as if a class can depend on any other class in
the system.
• probability theory method - the combinations counting rule
• The CCD is the number of different combinations of pairs of

dependent classes which can be formed from the total number
of classes in the design multiplied by 2 (cycles)

2
)!2(!2

!
2 ×

−
=

n
nCCDn

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 2121

UFUF

Consider the PCMEF design with five classes and that the
CCD for it is also 5.
For a corresponding unsupportable system, the CCD would
be 20:

DEFINITION: Unsupportability Factor (UF) is the result of the division of the CCD for
an unsupportable system by the CCD for a corresponding supportable system, i.e. the
system that conforms to supportable architectural framework, such as PCMEF.

The UF is therefore 20/5 = 4.
The UF factor serves as a modifier of the more detailed
metrics computed for designs/systems that were found to be
unsupportable.

202
12

1202
)!25(!2

!5
25 =×=×

−
=CCD

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 2222

CMDCMD
DEFINITION: Cumulative Message Dependency (CMD) is the total supportability
cost over all Synchronous Messages SMi within client objects of the costs associated with
changes to methods Mj in supplier objects or responsible delegator objects that are accountable for
servicing SMi. When calculating CMD, the dependency value for offending (unsupportable)
messages is increased by the Unsupportability Factor (UF).

If a responsible delegator object delegates the work
to an object in another package then the cost of
inter-package dependency is carried by the
responsible delegator.
Further delegation sequence does not result in an
additional cost (i.e. non-responsible delegators do
not carry a maintainability cost).

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 2323

CMD CMD –– calculation examplecalculation example
Consider a class C that contains two methods m1 and m2.
Consider further that m1 calls m2 (as the only thing that it
does).
If m2 is an empty method, then MDC for class C is equal 1
(because m1 depends on m2).
If, however, m2 contained calls (messages) to two other
methods m3 and m4 in supplier objects within the same
package, then MDC for class C would be equal 3 (because
m1 depends on m2, and m2 depends on m3 and m4).
If supplier objects in a neighborhood package serviced m3
and m4, then MDC for class C would be 5.
If supplier objects in a non-neighborhood package (according
to the PCMEF framework) serviced m3 and m4, then MDC for
class C would further increase by the UF value.

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 2424

CMD CMD -- supportablesupportable

Entity

Control

EEmailMessage

do2()

EEmployee

do3()

MDC = 1

MDC = 0

MDC = 2

MDP = 1

MDP = 2

CActioner

do1()

Mediator

MBroker

do3()

Foundation

FUpdater

do3()

MDP = 0 MDC = 0

This is supportable model:
CCD = 4
CMD = 3

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 2525

CMD CMD -- unsupportableunsupportable

Entity Control

EEmailMessage

do2()

EEmployee

do3()

MDC = 1

MDC = 0

MDC = 2

MDP = 1

MDP = 2

CActioner

do1()

Foundation

FUpdater

do3()
This is unsupportable model:
CCD = 12
UF = 3
CMD = 1+(2*3) = 7

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 2626

CEDCED

DEFINITION: Cumulative Event Dependency (CED) is the total supportability cost
over all methods containing “fire event” messages FEi plus over all methods containing
“process event” messages PEi within publisher objects plus over all methods servicing these
“process events” SEi within subscriber objects. The PEi supportability cost is associated with
changes to signatures of SEi methods. The SEi supportability cost is associated with
changes to messages in the bodies of PEi methods. Messages within registrator objects as well
messages contained in bodies of SEi methods are excluded as they are computed as part of
the CMD calculation. When calculating CED, the dependency value for offending
(unsupportable) events is increased by the Unsupportability Factor (UF).

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 2727

Presentation Control

Mediator

MSynchronizer

processDecisionEvent()

PDisplayEvent

PDisplayEventSubscriber

processDisplayEvent()

PConsole

addDisplayEventListener()
removeDisplayEventListener()
fireDisplayEvent()
do1()

nn

CDecisionEventSubscriber

processDecisionEvent()

CDecisionEvent

CActioner

processDisplayEvent()
addDecisionEventListener()
removeDecisionEventListener()
fireDecisionEvent()
do2()

nn

Event dependencies:
do1() --> fireDisplayEvent()
--> processDisplayEvent()
(interface uses dependency)

EDP = 2

Event dependency = interface
implementation dependency

EDP = 4

Event dependency =
interface implementation
dependency

EDP = 2

Event dependencies:
do2() --> fireDecisionEvent()
--> processDecisionEvent()
(interface uses dependency)

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 2828

DQ toolDQ tool

CCD:15
CMD:15
CED:0

CCD:13
CMD:9
CED:0CMsgSender

(from control)

MModerator
(from mediator)

-moderator

PSendPreview
(from presentation)

CAdmin
(from control)

-msgSender

-moderator

-admin

PWindow
(from presentation)

-admin

CCD:75
CMD:32
CED:74

CCD:31
CMD:22
CED:18

CCD:13
CMD:17
CED:0

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 2929

Pictorial summaryPictorial summary
control

entitypresentation foundation

mediator
PCMEF application packages

Programmable client
Browser client

Database

Web Server
Application

Server

Applet
Application client

Business componentsServlet
JSP

EJB bean
BC4J object

control

entitypresentation foundation

mediator
PCMEF application packages

Programmable client
Browser client

Database

Web Server
Application

Server

Applet
Application client

Business componentsServlet
JSP

EJB bean
BC4J object

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 3030

ConclusionConclusion –– let’s return to the naturelet’s return to the nature
For every complex problem there is a simple solution –
that won't work [H.L. Mencken]

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 3131

CounterCounter--conclusionconclusion
“Whether we understand the world because it is
hierarchic or it appears hierarchic because those
aspects of it which are not, elude our understanding
and observation” (Herb Simon,1962)
According to David Parnas, hirerachical structure is
undefined unless we specify precisely what
relationship exists between hierarchy layers
• x contains y
• x uses y
• x has access to y
• x gives work to y
• x gives resources to y
• x uses resources of y

© L.Maciaszek© L.Maciaszek ICEIS'04 PortoICEIS'04 Porto 3232

Additional referencesAdditional references
FOWLER, M. (1999): Refactoring. Improving the Design of
Existing Code, Addison-Wesley, 431p.

FOWLER, M. (2003): Patterns of Enterprise Application
Architecture, Addison-Wesley, 531p.

GAMMA, E. HELM, R. JOHNSON, R. and VLISSIDES, J.
(1995): Design Patterns. Elements of Reusable Object-
Oriented Software, Addison-Wesley, 395p.

LARMAN, C. (2002): Applying UML and Patterns. An
Introduction to Object-Oriented Analysis and Design and the
Unified Process, 2nd ed., Prentice-Hall, 627p.

MARTIN, R.C. (2003): Agile Software Development,
Principles, Patterns, and Practices, Prentice-Hall, 529p.

	Managing Complexity ofEnterprise Information Systems
	Main points
	References
	The trouble with a good many of us is that we come to a conclusion before we arrive at the end. (F.J. Mills)
	Size and complexity
	Object systems  new legacy systems?
	Difficulties that we are facing
	Application design objectives
	Architecture
	...converting to PCMEF design
	PCMEF subsystems
	PCMEF patterns
	CNP, NCP, EAP, DDP
	Chain of responsibility pattern
	CEP – cycle elimination
	CEP
	APP – acquaintance package
	UNP – upward notification
	PCMEF conformance verification
	CCD
	UF
	CMD
	CMD – calculation example
	CMD - supportable
	CMD - unsupportable
	CED
	DQ tool
	Pictorial summary
	Conclusion – let’s return to the nature
	Counter-conclusion
	Additional references

