
1

From Components to
Web Services

Dr Balbir Barn
bbarn@acm.org

Thames Valley University

ICEIS 2004

2

Contents
Tutorial aims and
objectives

Part 1: Basics
The web services vision
Business drivers and
challenges
What are web services?
What is the role of
component based
development?
CBD concepts
Web Service
Architecture concepts
Mapping from
components to web
services

Part 2: Method
A method for modelling
web services

Part 3: Conclusion
Assembly concepts
Process Execution

2

3

Part I: Basics

Tutorial Aims and Objectives
The Web Services Vision
Business Drivers (and Challenges)
What are Web Services?
How do Components fit in?
Component Concepts
Web Service Basic Technologies and
Standards

4

Preliminaries

Your background

My background

What you hope to get out of the tutorial

3

5

Aims and objectives

Aim:
To provide a solid understanding of web
service concepts and methods for designing
web services

Objectives
Understand component concepts and their
relevance to web service design
Demonstrate the application of CBD methods
to web service design
Early introduction of UML 2.0 concepts and
their relevance to web service assembly

6

The web services vision
The changing shape of the enterprise
– From Stovepipe to Value Chains to Externalization
– And now: The Virtual Networked Enterprise

Service based enterprises
– Business functions provide services to each other at different

stages of a business process
– A business process can viewed as set of services
– How the service is provided is of no consequence to the user

of the service
– The outsourcing model

• Execution separate from the use of the service
• Logistics; call centres all can be outsourced….

4

7

The web services vision – enterprise
application integration

Business Functional
Information Systems
Islands

Enterprise Application
Integration

The Virtual Enterprise

Each business function has its own
systems built with its preferred
technologies; manages it own data.
There is limited data integration
between systems

A common solution with in the org is
to use an EAI product to connect
applications using messages and hub
and spoke architectures.
Transform data from one system to
another.

Integration of applications across
firms where there severe challenges
Change definitions of enterprise
architecture.
The Grid Market Place where EAI is
a basic requirement
=> Web Service Technology

8

Business Drivers (and challenges)

Connecting Computer Systems
Two major themes
– E-business

• Exposing business processes over the Web
• The drive towards portals

– Development portals
– Business service portals

– Business process management
• Systematic automation of every day business processes
• Re-evaluation / positioning of monolothic applications as

components and / or services
• Focus on integration

5

9

What are web services?

Web Elements
– Web-based protocols
– Interoperability

– XML-based

Services aspects
– Modular
– Available
– Described
– Implementation-

independent
– Published

Web Service Definition
“ A software application identified by a Unique
Resource Identifier, whose interfaces and bindings
are capable of being defined, described and
discovered as XML artifacts. A web service supports
direct interaction with other software agents using
XML-based messages exchanged via Internet
based protocols”[1]

10

How do components fit in?
Arisen from similar business drivers

Characteristics that exist with Web services
– Separation between implementation and specification
– Focus on business objects
– Transparency of location

Business Object Component Service Views

STOCK
Management

IProdAvailability

IReserve

6

11

Component Based Development

Fashionable from 1996 to 2002
CBD Drivers
– Business Need

• Build for change
• The Web and E-Commerce
• Integrating Business

– Middleware maturity (From CORBA/COM to EJB
and DCOM)

– Method Maturity (and unification)
– Processes

CBD Concepts
– Specification, Interfaces, Encapsulation Boundaries;

Identity….

12

Application integration with components

Component Delivery

File Edit Window Help
Log Service Call

Cancel

File Edit Window Help
Customer Maintenance

Name

Address

CancelOKAdd

File Edit Window Help
Sales Forecast

File Edit Window Help
Sales Forecast

File Edit Window Help
Sales Forecast

File Edit Window Help
Sales Report

Sales Report: August 1996
Territory: South East
Units sold: 13,000
Net Revenue $953,000
Direct Costs $450,000
Comments
Increased rainfall levels during June and
July caused a surge in demand for watering
robots. Sales are up!

Workflow / Assembly

LegacyOracleSAP, Baan
Gap
filling

Component
Vendors

7

13

Components can model anything!

Order Product
1..*

0..*

Receive
order

Fulfil
order

Items
in

stock?

Yes

Business
Entity

Components

Business
Process

Components

14

Different uses of “component”

“Component” is not a well-defined term
Many people say they are “doing components” but
they are doing many different things
Ranges from loose notion of “useful package” to
fully standardised plug-in part
We use “component” to mean something quite
specific...

8

15

Business Component
– Entity Component
– Process Component

Application Component
– a special sort of Process Component

Business Infrastructure Component

Technical Infrastructure Component

Component Types

ERROR
HANDLING

CURRENCY
CONVERSION

CUSTOMER
MANAGEMENT

ORDERING
APPLICATION

16

It has an
implementation

for (int i=0;
i<limit; i++)
{ list[i] = …
}; ……

It can be
packaged up

It can be
deployed

Enterprise
Component

Standard

It conforms to
a standard

What is a Component (Lite)?

spec
It has a specification

?

9

17

Drilling down…

18

Component Reference Model

The Conceptual Model needs to address the
following key characteristics:
– Encapsulation Boundary
– Independent Deployability
– Independent Replaceability
– Precise specification of behaviour
– Separation between specification and

implementation

10

19

System
Configuration

Interface
Information Model

Type
1..n1..n

Pre-Post Pair
Component

Implementation
Component

Object
Component

Module

Interface

11 11

Operation
name

0..n1..n 0..n
+parameter

1..n

0..n

1

0..n

1

1..n

1

1..n

1

Component
1..n

n

1..n
+part

n+assembly

0..1

1

0..1

1

0..n

1

0..n
+deployedInstance

1

1..n

1..n

1..n
+file

1..n

Component
Specification

n

n

n+logical part

n
+logical assembly

1..nn 1..nn
offered

1..n1..n 1..n1..n1

n

1+spec

+realization
n

Component concepts

Implementation unit
Execution unit

Packaging unit

Specification unit

20

J2EE Functional Component Structure

Component
Specification

Interface
Specification

1..*

0..*

offered

required

0..*

0..*

Specification

Implementation

EJB

Java Class

Servlet
EJB Interface

Java Interface

offered

offered

required

<<refine>>
(Design Patterns)

Functional
Component

Technology
Component

Supporting
Classes

Acknowledgement to John Cheesman 2004

11

21

A Component Specification
– defines an implementation unit
– defines a deployment unit
– is a description of the guaranteed behavior of a component
– is expressed in terms of interfaces and constraints

The specification may include implementation
constraints and execution constraints, which impose
additional rules upon every implementation or
executable.

Component
Specification InterfacesAddressBook

ADDRESS MANAGER

RECOVERY PROVIDER

What is a Component Specification?

22

Why have Component Specifications ?

IProject
Manager

Project
Management

Project
Planning

Application

Rental
Management

IRental
Manager

IProjects
PlannerComponent

Specification

And here’s why we want specifications:
the client relies only on the spec, not the implementation

therefore
1) we can substitute alternative implementations

2) we can build up a library of well-defined assets

Interface =
contract

Stock
Management

IStock
Manager

dependency

12

23

What is an Interface?

An interface ...
– is a collection of related operation specifications

• must be implemented together
– defines dependencies on other interfaces

• e.g. IOrderManager must use ICustomerManager
– is stable once published

IRecoveryProvider

Interfaces
IAddressManager

deleteAddress ()

changeAddress ()

addAlternativeAddress ()

addAddress ()
restore()
backup()

24

Component Specification

The total description of component behavior
Any implementation and executable must conform to
this specification

addressDelete()

addressChange()

addressAddAlternative()

addressAdd()
operations “model of

externally
perceived
characteristics
and rules”

PERSON

ADDRESS

1

1

1..*
1..6

addressRead()

ADDRESS BOOK
1

*

ADDRESS
LINE

13

25

Why have a Component Reference
Model?

Multiple component technologies
– Understand current and emerging technologies from a

common reference point
– Independence from technologies

Application Development toolset and Methods
– Support for development and consumption of

components
– Method standardization and development

26

Web Services Concepts in more detail

14

27

Web service basic technologies and
standards

Requirements for a Web Service Architecture

28

Web Service Stack and its evolution

UDDI
WS-INSPECTION

SOAPv1.2

WSDL 1.1
WSDL 2.0
WSRP
WSIA
BPEL4WS
WS-COORD
WS-TRANS

TCP-IP
HTTP
SOAP 1.1

XML

Standards

15

29

Using the basic services

Existing services – WSDL; UDDI and HTTP /
SOAP 1.1
Still excellent application integration
technology

30

Web Service Example

What do we need to specify the supply and use of this
web service?
– What can I do?
– Where am I located?
– How can you access me?
– How do you know that I am the right service for you?
– How can I get this data to you and you will know what the

form of the data is?

ClientClient
Temperature

Service
Temperature

Service

16

31

SOAP

SOAP provides XML based protocols for exchange of data via
HTTP
– Other low-level protocol bases also possible (e.g. Message based)

Like CORBA, RMI (Java)
– Except XML based

Many implementations available (not all compatible with each
other)

SOAP
Client
SOAP
Client

SOAP
Server
SOAP
Server

SOAP request:
What’s the temperature

for zip code 100016

SOAP response:
“71 Degrees Fahrenheit”

32

Details of SOAP Messages

SOAP Elements
SOAP Envelope
– Method names
– Method parameters
– Who should process

the data
– Failure/Error

Encoding
Data Encoding
– Data typing rules

based on W3 XML
Schema

RPC Conventions
– One-way
– Two-way
– Method response

Soap Message

Envelope (required)

Header (optional)

Body (required)

Fault (optional)

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”

<SOAP-ENV:Body
<ns1:getTemp
xmlns:ns1=“urn:xmethods-Temperature”
SOAP-ENV:encodingStyle=“http://schemas .xmlsoap.org/soap/envelope/”

<zipcode xsi:type=“xsd:string”>10016</zipcode>
</ns1:getTemp>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

17

33

Details of a SOAP Request
POST /PubsWS/Service1.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://Semoris/XmlWebServices/GetAuthorName"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<GetAuthorName xmlns="http://Semoris/XmlWebServices/">

<s>string</s>
</GetAuthorName>

</soap:Body>
</soap:Envelope>

34

Details of a SOAP Response
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<GetAuthorNameResponse

xmlns="http://Semoris/XmlWebServices/">
<GetAuthorNameResult>

<xsd:schema>schema</xsd:schema>xml</GetAuthorNameResult>
</GetAuthorNameResponse>

</soap:Body>
</soap:Envelope>

18

35

What is UDDI?

A project to speed interoperability and adoption for
web services
– Standards-based specifications for service description

and discovery
– Shared operation of a business registry on the web

Partnership among industry and business leaders
Universal Description, Discovery, and Integration

From UDDI_Overview_Presentation.ppt © www.uddi.org

36

How UDDI v1 Works

UDDI Business Registry

3. UBR assigns a programmatically unique
identifier to each service and business
registration

Marketplaces, search
engines, and business
apps query the registry to
discover services at other
companies

4.

Segrvice Type
Reistrations

SW companies, standards
bodies, and programmers
populate the registry with
descriptions of different types
of services

1.

Business
RegistrationsBusinesses

populate
the registry
with
descriptions of
the services
they support

2.

Business uses this
data to facilitate
easier integration
with each other over
the Web

5.

From UDDI_Overview_Presentation.ppt © www.uddi.org

19

37

Registry Data

Businesses register
public information
about themselves

Standards bodies,
Programmers,
Businesses register
information about their
Service Types

White
Pages

Yellow
Pages

Green
Pages

Service Type
Registrations

From UDDI_Overview_Presentation.ppt © www.uddi.org

38

businessEntity
businessKey
name
URL
description
contacts
businessServices
identifierBag
categoryBag

Phone
Address
Email

Contact

businessService
Key
Name
Description
BindingTemplates

Phone
Address
Email

Contact

businessService
serviceKey
tModelKey
Name
Description
BindingTemplates

keyedReference
tModelKey
keyName
keyValue

keyedReference
tModelKey
keyName
keyValue

keyedReference
tModelKey
keyName
keyValue

keyedReference
tModelKey
keyName
keyValue

Business Registration

XML document
Created by end-user
company (or on their
behalf)
Can have multiple
service listings
Can have multiple
taxonomy listings

From UDDI_Overview_Presentation.ppt © www.uddi.org

20

39

Example of a Registration

businessEntity
TB993…
Harbour Metals
www.harbourmetals.co.au
“Serving Inner Sydney Harbour for …
contacts
businessServices
identifierBag
categoryBag

872-6891
4281 King’s Blvd, Sydney, NSW
Peter@harbourmetals.co.au

Peter Smythe

businessService
Key
Name
Description
BindingTemplates

businessService
23T701e54683nf…
Online catalog
“Website where you can …
BindingTemplates

BindingTemplate
5E2D412E5-44EE-…
http://www.sydneynet/harbour…
tModelInstanceDetails

tModelInstanceInfo

4453D6FC-223C-3ED0…
http://www.rosetta.net/catalogPIP

keyedReference
DFE-2B…
DUNS
45231

keyedReference
EE123…
NAICS
02417

tModelKeys
From UDDI_Overview_Presentation.ppt © www.uddi.org

40

Web Service Activities

Web
Service
modeling
and build

Legacy mining
and wrapping

Web
Service
Rental?

Application
modeling
and
delivery

Web
Service
Reuse

Web Service
Repositories

21

41

WSDL 1.1
XML-Based protocol
Enables a precise description of a web service
Analogous to CORBA IDL (Interface description language) used
for CORBA components
– Interface information describing all publicly available functions
– Data type information for all message requests and message

responses
Binding information about the transport protocol
Address information for locating a specified service

ClientClient
ServerServer

Contract Name
The Development Agreement between Joe Inc and

Fred Ltd.

Terms and Definitions
tested = …
correct = …
product = …
extension = …
horrible thing = …

Body of Contract
…Joe Inc shall deliver a tested and correctly

functioning product to Fred Ltd by the delivery
date, subject to extensions. If he should fail to do

so, then Fred Ltd can do various horrible things to
Joe...

42

Anatomy of a WSDL specification
definitions

– Root element;
– Name
– Declaration of namespaces

types
– Describes all the data types used

between the client and server
– W3C XML Schema

messages
– Describes one-way message request or

response
portType

– Defines sets of operations utilizing
messages

Binding
– Specifics about the wire protocols

service
– Defines the address for invoking the

service
– (URL for the SOAP service)

<Definitions>: Root WSDL Element

<types>: data types used in messages

<message>: messages that will be transmitted

<portType>: set operations offered by service

<binding>: the wire protocols used for
transmitting the messages

<service>: the location of the service

22

43

WSDL concepts summary

Implementation unit

Specification unit

Execution unit

WireProtocol
type

Binding
name

11

DataType

Complex
Type

XML Schema
Scalar Type

Port
name
locationPortType

name 1..n1..n

Service
Implementation

Deployed
Service

Service
name
documentation

1..n1..n

1..n1..n

0..1 10..1 1

0..n 10..n 1

Operation
name

1..n1..n

1..n1..n

Message
name

n

n

n

n
input

n

n

n

n
output

10..n 10..n

type

0..n0..n

44

WSDL Characteristics

“Componentized” for specification re-use
– Data Type packages
– Message packages
– Fault Message packages
– Import facility

23

45

Mapping Component concepts to Web
Service concepts – Exercise 1

Component Module

Component Object

Component Implementation

Component

Information Type

Pre-Post Specification

Operation

Interface Information Model

Interface

Component Specification

System Configuration

Web Service ConceptComponent Concept

46

What does this mean?

Mappings indicate that:
We can leverage approaches and maturity of CBD
practice to the design and implementation of web
services
We can identify additional requirements on
standards
We can tailor existing methods for software
development
We can review the applicability of UML 2.0 in the
context of web services modelling.
This tutorial will focus on methods for modelling
web services

24

47

Status of standards

UDDI
WS-INSPECTION

SOAPv1.2

WSDL 1.1
WSDL 2.0
WSRP
WSIA
BPEL4WS
WS-COORD
WS-TRANS

TCP-IP
HTTP
SOAP 1.1

XML

Standards

48

Part II: Methods for specifying services
and assemblies

Considerations and Inputs:
Component Based Design Techniques
– Interface specification
– Interaction modelling
– Assembly considerations

UML 2.0 semantics and notation
Web service specification standards
Method areas addressed:
– Business application assembly from web services
– Business process assembly and automation

25

49

Hotel Case Study
Adapted from (Cheesman, Daniels 2001)
There is a requirement to develop a new web based information system to
support reservations and other related functions. Currently, the Hotel group has
already purchased a Billing System with which the organization is relatively
satisfied. The Group has also an existing contract with a on-line credit checking
agency. There are basic functional requirements to handle the creation of new
reservations, updates and canceling of reservations. Changes to reservations,
modification of customer information and other mechanisms to contact customers
for various notification purposes form some additional requirements.
The Hotel Group offers a variety of hotels, room types and prices vary according
to market demand.
At the moment, the implementation strategy has not been determined but a J2EE
architecture or a web services model is being considered as the Hotel Group want
to recoup the investment in this system by selling services (by consumption) or
components to smaller hotel management companies who have similar
requirements.

Exercise:
1. Identify Business (Web) Services or components that you think that this system will

provide or utilize.
2. How would you group operations to web services?
3. Provide a short rationale for your choices/

Timings:
10 minutes
5 minutes feedback

50

Business application assembly from
web services

Event

Event

<<Interface>>

<<Interface>>

<<Interface>>

<<Interface>> <<Interface>>
<<Interface>>

<<Interface>> <<Interface>><<Interface>><<Interface>>

Op1

<<Interface>>

<<comp spec>>
Reservation

System
IMakeReservation

ITakeUpReservation

<<comp spec>>
Hotel
Mgr IHotelMgt

Business Process Modelling Decomposition into sub-processes
Scoped by events

Domain Modelling
Identiifying Business Services Interaction Modelling

Refining Business Services
And operations

Application Assembly - Specification

Business Service Specification

26

51

Business Web Service Development
Process

Requirements definition
– Develop the Business process model
– Develop the Business context model
– Produce Use case context model
– Specify Use cases

Web Specification
– Specify Web Service Interfaces
– Partition components

• Business Services
• Application Services

– Specify Web service collaborations
Implementation
– Identify target technologies
– Realize component specifications
– Deploy and instantiate components

Requirements
Definition

Web Service
Identification

Web Service
Collaboration

Web Service
Specification

Identify Target
Technology

Realize Component
Specifications

Requirements

Specification

Implementation

Deploy and Instantiate
Component

52

Business Processes

27

53

Business Processes

Events

54

Identifying System Interfaces

Systems require dialog between actors and
the functionality of the system
The Dialog is represented by the step logic in
the Use Case Descriptions
Each use case represents sets of dialogs with
the system. These become system interfaces.

28

55

Use Case Diagram showing
<<includes>>

56

Defining a System Interface

System
Make a Reservation

<<interface type>>
ImakeReservation

getHotelDetails()
getRoomInfo()

makeReservation()

29

57

Scoped Business Type Model

∅

∅ ∅

∅
∅

58

Identifying Core Business Types

Identify core types by thinking about which information is dependent on
other information and which information can stand alone
Characterised by:

– A unique business identifier (primary key)
– Independent existence (no mandatory associations)

30

59

Define Business Interfaces

Each core type is allocated a “Business” Interface that is used to
manage instances of core types.
This is more efficient than creating a “Icustomer” Interface. As we
would then end up with many component objects rather than a
single component object which simply manages a data structure
representing a customer object.

60

Allocating Responsibilities

Goals:
– We want each type (core or otherwise) to be owned

by just one Interface
Core Types are allocated to the “managing”
interface (indicated by a containment symbol)
If a type provides details (is related to) to a
core type then it is also allocated to the same
interface.

31

61

Allocating Types to Interfaces

The main problem is when a type details more than
One type that belongs to different interfaces.

Here: Reservation is a detail of Room and Hotel.
It could go to either.
We choose to allocate it to the IHotelMgt Interface
Because the only information that Hotel needs to
Know about Customer is the customer id.

62

System Component Specification and
others

Represent the system
as a component
Represent existing
systems as
components
Represent each
Business Interface as
Component

<<comp spec>>
Reservation

System
IMakeReservation

ITakeUpReservation

<<comp spec>>
Billing

System
IBilling

<<comp spec>>
Customer

Mgr ICustomerMgt
<<comp spec>>

Hotel
Mgr IHotelMgt

32

63

Discovering Business Operations

A rigourous process that:
Takes each operation on the system interfaces
Draws a collaboration diagram that “traces” or
executes the constraints or invocations of the
system interface operation
– Collaboration diagrams show the invocation of

business operations between Business Interfaces
Each requirement for an operation results in
an operation being added to the Interface

64

Interaction Diagrams – Client Server
Models

Functionality of a system is “implemented” by one
object requesting a service from another object
– The client server model

The Server may provide the service requested by
requesting services of other objects and then
responding back to the original client.
Diagrams representing the requests of services and
their fulfillment are called Interaction Diagram
– Sequence Diagrams
– Collaboration Diagrams

33

65

Dealing with getRoomInfo

 : ReservationMaker :
IMakeReservation

 : IHotelMgt

getRoomInfo(ReservationDetails, Boolean, Currency)

getRoomInfo(ReservationDetails, Boolean, Currency)

We want to get details about a room so we supply
info about the required reservation
We will get back availability and the cost
Again there is simple delegation to an operation on
the Business Interface

ReservationDetai ls

hotel : HotelID
dates : DateRange
roomType : String

<<data type>>

66

Dealing with makeReservation
From the use case; the makeReservation operation must
create a reservation and notify the customer via email.
We first define the operation on the system interface.

A new structure – CustomerDetails is also defined
The operation will return a reservation reference string but
because there is no guarantee of finding an existing reference
we allow for different return codes.

makeReservation(res : ReservationDetails, cus : CustomerDetails, resRef : String) : Integer

CustomerDetails

name : String
postCode : String
email : String

<<data type>>

 : ReservationMaker :
IMakeReservation

 :
ICustomerMgt

makeReservat ion(ReservationDetails, CustomerDetai ls , String)

getCustomerMatching(CustomerDetails, CustID)

34

67

makeReservation….
Having got the customer ID of the matching information we supplied we
can now get the Hotel Management component interface to make the
reservation with the customer ID that we have located.
We can follow up by notifying the customer about the reservation

 : Reservat ionMaker :
IMakeReservation

 :
ICustomerMgt

 : IHotelMgt

makeReservation(ReservationDetails, CustomerDetails, String)

getCustomerMatching(CustomerDetails, CustID)

notifyCustomer(CustID, String)

makeReservation(ReservationDetails, CustID, String)

68

When the customer does not exist…

 : Reservat ionMaker :
IMakeReservation

 :
ICustomerMgt

 : IHotelMgt

makeReservation(ReservationDetails, CustomerDetails, String)

getCustomerMatching(CustomerDetails, CustID)

notifyCustomer(CustID, String)

makeReservation(ReservationDetails, CustID, String)

createCustomer(CustomerDetails, CustID)
If customer is not
found then it is a
new customer so
we need to create
an ID

35

69

Completing the Interactions

 : Reservat ionMaker :
ICustomerMgt

 : IHotelMgt :
ITakeUpReservation

getReservation(String, ReservationDetails, CustomerDetails)

getReservation(String, ReservationDetails, CustomerDetails)

getCustomerDetails(CustID)

ITakeUpReservation

getReservation(resref : String, resDet : ReservationDetails, cd : CustomerDetails)
beginStay(resref : String, days : Integer)

<<Interface>>

70

Contracts

Usage Contracts
– (aka Client Supplier Contract)
– The contract between a component specification

interface and a client that wishes to use a service of
the interface

Realization Contract
– The contract between a Component Specification

and its implementation

36

71

Usage Contracts

Describe the relationship between a service interface
and its clients

Using:
An Interface concept – grouping a collection of related
operations
Each operation specified in terms of an
– Operation signature
– An Interface information model – things that need to

remembered by an interface in order for an operation to fulfill
its obligations

– Preconditions
– Postconditions

Use Design by Contract Principles

72

Constructing an Interface Information
Model

Interface Information Model
– A limited “view” of the underlying Business Type Model that is

“Scoped” by an interface
A first cut Interface Information Model is constructed
by:
– Following all the relationships

from the Interface
– Adding any additional data

types that you constructed
during Component
Interaction Modelling

– Add additional relationships to
simplify operation specfication

15

Allocating Types to Interfaces

The main problem is when a type details more than
One type that belongs to different interfaces.

Here: Reservation is a detail of Room and Hotel.
It could go to either.
We choose to allocate it to the IHotelMgt Interface
Because the only information that Hotel needs to
Know about Customer is the customer id.

37

73

Interface Information Model for
ICustomerMgt

ICustomerMgt

getCustomerMatching(custDet : CustomerDetails, cid : CustID) : Integer
notifyCustomer(cid : CustID, resref : String)
createCustomer(cust : CustomerDetails, cid : CustID) : Integer
getCustomerDetails(cust : CustID) : CustomerDetails

<<Interface>>

Customer
name : String
postCode : String
email : String
id : CustID

<<core>>
nn

CustomerDetails
name : String
postCode : String
email : String

<<data type>>

74

Interface Information Model for
IHotelMgt

Only need id
though

IHotelMgt

getRoomInfo(res : ReservationDetails, availability : Boolean, price : Currency)
getHotelDetails(match : String) : HotelDetails
makeReservation(res : ReservationDetails, cid : CustID, resRef : String) : Integer
getReservation(resref : String, resDet : ReservationDetails, cd : CustomerDetails)
beginStay(resref : St ring, days : Integer)

<<Interface>>

Customer
name : String
postCode : String
email : String
id : CustID

<<core>>

Hotel
name : String

<<core>>
nn

Room
number : String

<<type>>

1..n1..n

RoomType
name : String
price(Date) : Currency
stayPrice(DateRange) : Currency
available(DateRange) : Boolean

<<type>>

1..n1..n

1

n

1

n

Reservation
resRef : String
dates : DateRange

<<type>>

n1 n1

0..1

n

0..1

n

nn

1

n

1

n

HotelDetails
id : HotelID
name : String
roomTypes : String []

<<data type>>

ReservationDetails
hotel : HotelID
dates : DateRange
roomType : String

<<data type>>

CustomerDetails
name : String
postCode : String
email : String

<<data type>>

38

75

UML Interface Definitions to WSDL
specification

We now have interface definition that:
– Precisely describes operations and their

parameters
– A description of the information that the interface

needs to remember (the types and their
relationships)

We need to produce the WSDL that will define
the web service that implements the interface
– Using a simple pattern
– Using toolsets to help us do the work

76

Web Service Specification Pattern
Problem

– WSDL describes operations, parameters, their types and the wire protocol for
transmission of data. Our interface design approach describes operations,
parameters, their types and a more complete type model that represents all
the information that the interface needs to remember. So when considering
the design and implementation of the interface as a web service we need to
consider how the interface information will be persisted.

Solution
– We will treat the Business web service as a Session. All the type model will

be represented as a classes. Types specifically used to define complex data
types will be implemented as Structs. The Business web service will manage
instances of objects.

Advantages and Disadvantages
– The interface can be implemented exactly as modelled
– Persistence of objects to a databases are the responsibility of the interface

operations and/or helper classes

Example Walkthrough

39

77

Using Dot NET and MS Visual Studio

Visual Studio Project – Web Service

Implementation of web service contains a mix of
implementation code and specification code

Web Service Specification
– Service Directives
– Method Directives

Complex types used in parameters

78

Web Service Directives
namespace IHotelMgt
{

/// <summary>
[WebService(Namespace="http://walkthrough/HotelMgt/",

Description="The Hotel Management service for reservations")]

public class HotelMgtService : System.Web.Services.WebService
{

}

[WebMethod(Description="This method returns the details of a room
availability for a reservation " +

"when supplied with the hotel id")]
[SoapMethodAttribute()]

public void getRoomInfo(ReservationDetails res, int availability, float
currency)
{
…
}

40

79

Parameter Types and Interface
Information Model
public struct ReservationDetails

{

public int hotelID;

public string startDate;

public string endDate;

public string roomType;

}

public struct CustomerDetails

{

public string name;

public string postCode;

public string emailAddress;

}

public class RoomType

{

public string name;

public int price;

}

public class Hotel

{

public int hotelID;

public string name;

public Room[] roomset;

}

public class Room

{

public string roomMum;

public Hotel owningHotel;

public RoomType rt;

}

Parameter Types

Interface Information Model

80

The Resulting WSDL document

41

81

Design by Contract

A contract between people is a written document that
serves to clarify the terms of the relationship where
both parties accept obligations and can found their
rights.
Contracts in software describe
– the services (operations) that are provided by an interface

(component)
– the conditions under which the service will be provided
– specification of the results of the service that is provided given

that the conditions are fulfilled

If either party fails to meet the conditions -
– the contract is broken
– it is clear who is responsible for breaking the contract

82

IOrderManager
addOrderItem(...):

Client Ordering:1:addOrderItem

Supplier

Obligations Benefits

Client Client is obliged to call
addOrderItem with an
existing current order
(Pre Condition)

Get current order updated
with new order item

Supplier Supplier is obliged to add the
new order item to the
existing current order
specified
(Post Condition)

Simpler processing – thanks
to the assumption that the
order is current

Contracts in Software

42

83

Part III: Advanced Concepts

Types of component architecture
Business Process Execution Language for
Web Services
UML 2.0

84

Component Specification Architecture

In defining an initial component specification
architecture we need to consider:
– Interfaces identified as part of the component

modelling process
– Existing interfaces to systems
– Architectural constraints

43

85

Component Spec Contracts

<<comp spec>>
Offered Interfaces

Requiring Interfaces

86

System Component Specification and
others

Represent the system
as a component
Represent existing
systems as
components
Represent each
Business Interface as
Component

<<comp spec>>
Reservation

System
IMakeReservation

ITakeUpReservation

<<comp spec>>
Billing

System
IBilling

<<comp spec>>
Customer

Mgr ICustomerMgt
<<comp spec>>

Hotel
Mgr IHotelMgt

44

87

An Initial Architecture

Interface Notation

Component Specification
Notation

Dependencies

88

Applications and Assemblies

What is an Application?

Examples?

An application is the software that a user runs,
that provides a set of useful, related services
for that user or their organization and which the
user perceives to be a single entity

45

89

Assembly

What is an assembly?
An assembly is the software that integrates
(through calls) several pre-built components or
software parts.

The assembly may itself be a component if it
offers programmable interfaces.

The assembly may constitute an application if
it is the software that a user runs and
perceives to be a single entity…

90

Assembly – at type or instance?

Does application assembly happen at type
level or instance level?
Consider construction of GUIs using Visual
Modelling tools:
– Instance Level
– Types are stored in a palette
– Instances are dragged onto a development area
– Connected using simple event driven scripting

46

91

Instance Level Assembly

What are the implicit restrictions imposed by
instance level assembly?
Instances are predetermined at assembly time
I.E. Major software benefit of being able to
create new instances at will and any number is
lost!
If the same set of instances are used in many
situations then we can construct template
assemblies
Check out www.groove.net

92

Assembly Styles

Visual Component assembly
– Java Beans ; Visual Age etc.

Document based assembly
– Document editing is component assembly

End-user assembly
– Solutions constructed by end-users using component instance

Managed and “self-guided” component assembly
– Intelligent agents using a rule base to interrogate servers to

locate component instances to construct an assembly
(Research area!)

– Service based

47

93

Assembly Specification

Architectural Description Languages
Dependency wiring
Port – Connector Modelling (Garlan and
Shaw)
BML
Business Process Execution Language for
Web Services
UML 2.0 Specification

94

UML 2.0 Components - a single slide

Components have
“provided” and “required”
interfaces
Components have a
realization concept
Components can be
assembled into larger
grained software
component assemblies or
applications
– Using Connectors (simple

and advanced form)

48

95

UML 2.0 Specification – Component
Spec Architecture

96

Component Assembly in UML 2.0

49

97

Business Process Execution

Web Services goal:
– To achieve interoperability between applications using web

services and a standard process integration model

Complex systems integration
– WSDL

• a stateless model
• Synchronous or uncorrelated asynchronous model

– Business model interactions include:
• Are Sequences of peer-peer communications
• Synchronous or asynchronous
• Within stateful, long-running interactions

– So Platform independent Protocols are needed.

98

Business Process Execution Language
for Web Services – BPEL4WS

Draft Standard – part of w3.org
Convergence of:
– XLANG – Microsoft Biztalk Server
– WSFL – Web Service Flow Language (IBM)

Status:
– 2nd Draft public release as BPEL4WS specification
– Part of several Business Process Execution

toolsets including
• www.Collaxa.com

50

99

BPEL4WS in a nutshell

Description of business protocols that is
– Platform-independent
– Captures all business behavioural aspects that have inter-

enterprise business significance
– That is executable

Concepts
– Support for data dependent behaviour

• Use of conditional and time-out clauses
– Specification of exceptional conditions, their effects and

recovery sequences
– Long running interactions (nested) and coordination of their

units of work and at different levels of granularity
XML based
Layered on top of WSDL
See refs at end.

100

Concluding Remarks

The tutorial has formalised the relationship
between component based development and
web services.

The mappings suggest that there is great
opportunity to leverage CBD practice and
apply them to web services.

An example of such leverage has been
demonstrated in the presentation of an
adapted CBD method.

51

101

References
Fremantle, P; Weerawarana, S; Khalaf, Rania. (2002). Enterprise Services. CACM Vol 45 (10).
Kreger, H. (2003). Fulfilling the web services promise. CACM. Vol 46(10).
Donato, C.,Durchlag, S and Hagel III, J. (2001). “Web services: enabling the collaborative enterprise”. (http://e-
serv.ebizq.net/wbs/donato_1a.html)
McKeen, J.D and Smith H.A (2003). Making IT Happen. John Wiley and Sons, Chichester, UK.
OMG (2003). UML 2.0 Specification.
Cheesman, J., Daniels, J. (2001) UML Components; Addison-Wesley
D’Souza, D., Cameron Wills, A. (1998) Objects, Components and Frameworks with UML; Addison-Wesley.

Atkinson, C et al (2002). Component-based Product Line Engineering with UML; Addison Wesley.
Szyperski, C. (1997) Component Software: Beyond Object-Oriented Programming, Addison Wesley
Barn, B., Brown, A.W (1999). Enterprise-Scale CBD: Building Complex Computer Systems From Components;
9th International Conference on Software Technology and Engineering Practice (STEP'99), Pittsburgh,
Pennsylvania, USA.
Barn, B., Cheesman, J. and Brown, A.W (1998). Tools and Methods for Component Based Development.
Proceedings of Tools-26, Santa Barbara, CA, USA, Aug 98.
Yang, J. (2003) Web service componentization. CACM Vol. 46. No. 10.
Meredith, L.J and Bjorg, S. (2003). Contracts and types. CACM Vol. 46. No. 10.
Curbera, F, Khalaf, R., Mukhi, N., Tai, S and Weerawarana, S. (2003). The next step in web services. CACM Vol.
46. No. 10.
W3C. (2001). Web Service Description Language (WSDL) 1.1. http://www.w3.org/TR/2001/NOTE-wsdl-
20010315
Business Process Execution Language for Web Services (2003). http://www-1-
6.ibm.com/developerworks/webservices/library/ws-bpel
Thai, T, Lam, Q. H. (2002). .Net Framework Essentials. O’Reilly, CA, USA.
Cerami, E. (2002). Web Services Essentials. O’Reilly, CA, USA.
Scribner, K, Stiver, M.C. (2002). Applied Soap: Implementing .NET XML Web Services. SAMS, USA.

