
Decision Guidance Systems and Applications
To Manufacturing, Power Grid, Supply Chain and IoT

Alex Brodsky
Department of Computer Science
Volgenau School of Engineering

George Mason University

cs.gmu.edu/~brodsky

ICEIS 2018 Keynote Address

Acknowledgements: research sponsors

Acknowledgements: GMU faculty co-authors

• Prof. Paul Amman
• Prof. Chun-Hung Chen
• Prof. Carlotta Domeniconi
• Prof. Igor Griva
• Prof. Sushil Jajodia
• Prof. Larry Kerschberg
• Prof. Jessica Lin
• Prof. Daniel Menasce
• Prof. Ami Motro
• Prof. Lance Sherry
• Prof. John Shortle
• Prof. Joao Sousa
• Prof. X. Sean Wang
• Prof. Jon Whittle
• Prof. Duminda Wijesekera

Acknowledgements: my PhD students
Graduated
• Prof. Hanan Mengash, Group Decision Guidance for Recommenders with Composite Alternatives, 2016.
• Prof. Hesham Altaleb, Market-based Decision Guidance for Electric Power Consortia, 2015.
• Dr. John McDowal, A Framework for Optimal Service Composition and Execution Based on Business Process Management Notation

(BPMN), 2014 (jointly w/ Prof. Kerschberg)
• Dr. Nathan Egge, Decision Guidance Query Language (DGQL): Algorithms based on Preprocessing and Continuous Approximations, 2014.
• Dr. Susan Farley, Top-k Algorithms for SimQL: A Decision Guidance Query Language Based on Stochastic Simulation, 2013.
• Prof. Ben Ngan, A Framework and Algorithms for Multivariate Time Series Analytics: Learning, Monitoring, and Recommendation,

2013. (jointly with Prof. Lin)
• Dr. Gordon Shao, Decision Guidance for Sustainable Manufacturing, 2013. (jointly with Prof. Ammann)
• Dr. Judy Luo, Regression Learning in Decision Guidance Systems: Models, Languages and Algorithms, 2012.
• Dr. Khalid Alodhaibi, Decision-Guided Recommenders with Composite Alternatives, 2011.
• Dr. Lei Zhang, Securing the Information Disclosure Process, 2010. (jointly with Prof. Jajodia)
• Prof. Malak Al-Nury, Service Composition Framework to Unify Simulation and Optimization in Supply Chains, 2010.
• Prof. Csilla Farkas, Secure Databases: Constraints, Inference Channels and Monitoring Disclosures, 1999. (jointly with Prof. Jajodia)
• Dr. Jia Chen, Multityped Constraint Algebras and Mathematical Programming in Constraint Databases, 1999.
• Dr. Victor Segal, Algorithms, Optimization and Implementation of Constraint Object-Oriented Database System, 1999.
• Prof. Samuel Varas On Optimal Constraint Decomposition, Monitoring and Management in Distributed Environments, 1998. (jointly with

Prof. Kerschberg)
Current
• Mohan Krisnamoorthy, Manufacturing Processes: Languages and Algorithms for Descriptive, Predictive and Prescriptive Analytics.

(jointly with Prof. Menasce)
• M. Omar Nachawati, Algorithms for Decision Guidance Management System
• Roberto Levy, A Decision Guidance Framework for Energy Public Policy and Investment
• Fernando Boccanera, Decision Guidance for Healthcare Individual and Group Policy

What is it about?

Decision Guidance (DG) systems are a class of decision support
systems geared to

• elicit knowledge from domain experts and
• provide actionable recommendations to human decision-makers,
• with the goal of arriving at the best possible course of action.

Examples of Decision Guidance Systems:
Supply Chain Management

Examples of Decision Guidance Systems:
Renewable Power and Storage

GMU pilot project for Dominion Virginia Power

U.S. Energy Information Administration (EIA)

Examples of Decision Guidance Systems:
Tesla prep and body shop

GMU project for the National Institute of Standards & Technology

Outline
• DG systems: need, challenges, vision
• DG language & tool example:

• DG Analytics Language (DGAL) & Management System (Unity DGMS)

• DG application example:
• Manufacturing and supply service networks based on model repository

• DG algorithm example:
• Optimizing multistage service networks based on preprocessing and decomposition

• Broader view on DG research: languages/tools, algorithms, applications
• Three grand challenges:

• IoT + DG = (Smart) Cyber Physical Service Networks
• Design (e.g., product, process, architectural, …) + DG = (Smart) Parametric Design
• Public policy (e.g., renewable energy) + DG + Group decision methods = (Smart) public policy

• Conclusions

Decision Guidance Systems (DGS)

DGS need to
• use and mine large amounts of data
• elicit knowledge about model structure from domain experts
• learn deterministic or stochastic models
• elicit metrics, KPI and decision objectives
• perform analysis tasks, incl. monitoring, diagnosis, prediction,

optimization
• explain actionable recommendations to decision-makers
• solicit decision-makers feedback for iterative improvement

Tools ...

Domain Specific Modeling & Analytics GUI Interfaces / Mappers

Descriptive
Analytics
Tasks

Predictive
Analytics
Tasks

Diagnostic
Analytics
Tasks

Prescriptive/
Optimization
Analytics
Tasks

Learning/Mining:
PMML, PFA, ...

Simulation:
Modelica-based,

Simulink, ...

DBMS: SQL,
XQuery,
JSONiq

Optimization:
MP/CP using

OPL, AMPL, ...

?
TODAY every task is
implemented:

• one off
• from scratch
• non-reusable
• non-modular
• requires math, OR, IT &

domain-specific expertise
• high cost
• long development cycle
• difficult to modify/extend

Tools ...

Reusable, extensible, modular KB of analytic models (AM)

Domain Specific Modeling & Analytics GUI Interfaces / Mappers

Descriptive
Analytics
Tasks

Predictive
Analytics
Tasks

Diagnostic
Analytics
Tasks

Prescriptive/
Optimization
Analytics
Tasks

Learning/Mining:
PMML, PFA, ...

Simulation:
Modelica-based,

Simulink, ...

DBMS: SQL,
XQuery,
JSONiq

Optimization:
MP/CP using

OPL, AMPL, ...

domain-
specific
analytics
dashboard
views

domain-
specific
atomic
models &
instances

domain-
specific
composite
models &
instances

Decision
Guidance
Management
System
DG Analytics
Language:
- Computation
- Prediction
- Optimization
- Learning
- Pareto analysis … ...

Tools ...

Reusable, extensible, modular KB of analytic models (AM)

Domain Specific Modeling & Analytics GUI Interfaces / Mappers

Descriptive
Analytics
Tasks

Predictive
Analytics
Tasks

Diagnostic
Analytics
Tasks

Prescriptive/
Optimization
Analytics
Tasks

Learning/Mining:
PMML, PFA, ...

Simulation:
Modelica-based,

Simulink, ...

DBMS: SQL,
XQuery,
JSONiq

Optimization:
MP/CP using

OPL, AMPL, ...

Decision
Guidance
Management
System
DG Analytics
Language:
- Computation
- Prediction
- Optimization
- Learning
- Pareto analysis … ...

Outline
• DG systems: need, challenges, vision
• DG language & tool example:

• DG Analytics Language (DGAL) & Management System (Unity DGMS)

• DG application example:
• Manufacturing and supply service networks based on model repository

• DG algorithm example:
• Optimizing multistage service networks based on preprocessing and decomposition

• Broader view on DG research: languages/tools, algorithms, applications
• Three grand challenges:

• IoT + DG = (Smart) Cyber Physical Service Networks
• Design (e.g., product, process, architectural, …) + DG = (Smart) Parametric Design
• Public policy (e.g., renewable energy) + DG + Group decision methods = (Smart) public policy

• Conclusions

Background: JSON (Java Script Object Notation) and
JSONiq query language

Data format/
model

Query/data
manipulation
language

Type of data Used for Comments

Relational
(tabular)

SQL • structured
• flat tables
• human readable

Relational databases, such
as Oracle, SQL server

• dominant in Buz Info
Sys

• Not as data interchange
format

XML XQuery • semi-structured
• User-defined tags, HTML-

like for data
• hierarchical
• human and machine

readable

• data interchange
• web-services

• Popular
• Verbose

JSON JSONiq
=
SQL for
NoSQL stores

• semi-structured
• objects =

key-values pairs
• hierarchical
• human and machine

readable
• compact as compared to

XML

• lightweight data
interchange

• web-services
• REST SOA
• IoT stack
• Data in NoSQL

stores, incl.
MongoDB,

• Highly popular
• Identical w/JS data

model
• similar Python & Java

data models
• Dominant in REST, IoT,

asynchronous
client/server
communication,
replacing XML

P: fixed params
V: control params AM

M: metrics
C: constraints

AM
M: metrics
C: constraints

P: fixed params
V: control params

AM
M: metrics
C: constraints

P: fixed params
V: control params

P: params
V: control vars PM

M: metrics
C: constraintsAM
M: metrics
C: constraints

P: fixed params
V: control params

AM
M: metrics
C: constraints

P: fixed params
V: control params

P: fixed params
V: ???

O: objective

AM

Minimize/
Maximize

P: params
V: optimal control

P: fixed params
V: control params AM

M: metrics
C: constraints

Soundness and Completeness of Reduction

semantics

reduction

min f (V)
s.t. C (V)

symbolic
output
structure

I(V)

q,d Φ(q,d) Φ’(q,d)?
=

reconstruction

optimization solver

Soundness and Completeness of Reduction

semantics

reduction

min f (V)
s.t. C (V)

symbolic
output
structure

I(V)

q,d Φ(q,d) Φ’(q,d)?
=

reconstruction

optimization solver

Theorem:
The reduction procedure is

1. sound:
Φ’(q,d) Φ(q,d)

2. complete:
Φ’(q,d) Φ(q,d)

P: fixed params
V: ???

O: objective

AM
Minimize/
Maximize

P: params
V: optimal control

P: ???
V: ???

LS: training
set of input-
output pairs

Learn
Parameters

P: best fit params
V: ???

AM

P: fixed params
V: control params AM

M: metrics
C: constraints

P: fixed params
V: control params

Stochastic

AM
M: metrics
C: constraints

P: params
V: control vars

AM
(stochastic)
prediction

P: params
V: control vars

Stochastic

AM
M: metrics
C: constraints

E(M): mean & std. dev. of metrics
P(C): prob. of constraint satisfaction

DGAL summary:

• Is based on KB of analytic (performance) models (AMs) that:
• Express constraints and metrics of interest as a function of fixed &

control parameters (of a process)
• Are independent of analytical tasks & tools/algorithms

• Allows reuse of AMs as operands to diverse analytics operators (forming
analytics algebra on AMs) :

• Simulation
• Prediction
• Deterministic or stochastic optimization
• Learning parameters of AM for regression or classification
• …..

• Performs these operators/tasks by automatic reduction to specialized low-level
models and algorithms, w/out the need to manually craft low-level models.

• Uses query / data manipulation language (JSONiq) over JSON data format to
• Express AMs
• Express analytics algebra operators / tasks

Unity DGMS architecture

Unity DGMS: application management layer

Unity DGMS: tool management layer

Unity DGMS: analytics management layer

Compiling Optimization Queries
Six steps:

1. Reusable Analytic Model
Resolution

2. Source-to-Source
Transformation

3. Symbolic Execution
4. Target Model Generation
5. Target Solver Execution
6. Input Instantiation

Steps 1-3 & 6 (tasks) can be used to
implement other DGAL operators:
e.g. learn & predict

Preliminary performance evaluation

• Hypothesis: Execution time
overhead of compiled reusable
analytic models (into task- and tool-
specific models) is within a constant
factor of that of manually crafted
ones

• Method: Compare execution times
of compiled DGAL model versus
manually crafted OPL model on
randomized input pairs

• Preliminary Results: Compiled
DGAL models are currently 2.3
times slower than manually crafted
OPL models

• We are investigating techniques to
improve performance of compiled
models

Outline
• DG systems: need, challenges, vision
• DG language & tool example:

• DG Analytics Language (DGAL) & Management System (Unity DGMS)

• DG application example:
• Manufacturing and supply service networks based on model repository

• DG algorithm example:
• Optimizing multistage service networks based on preprocessing and decomposition

• Broader view on DG research: languages/tools, algorithms, applications
• Three grand challenges:

• IoT + DG = (Smart) Cyber Physical Service Networks
• Design (e.g., product, process, architectural, …) + DG = (Smart) Parametric Design
• Public policy (e.g., renewable energy) + DG + Group decision methods = (Smart) public policy

• Conclusions

Heat sink (HS) assembly manufacturing & supply service network

51

Alumina (L2)

Accessories (L2)

Alumina	
Powder

Aluminum	
Plate

Finished
Heat	

Sink	Part
Demand (L1)

Accessory	
Package

Aluminum Plate Contract
Manufacture (L2)

Smelting (L2)

HS Base Contract
Manufacture (L2)

HS Shearing
(L3)

Anodizing
(L3)

CNC
Machining
(L3)

Quality
Inspection
(L3)

Assembly
(L3)

Supply (L1)

Manufacturing (L1)

HS Base Shearing
(L3)

HS Base Drilling (L3)
HS Base PL (L2)

Heat	
Sink	
Base

HS PL (L2)

Heat Sink Supply Chain (L0)

Defining the nodes in the service network

Vendor – organization that provides a finished product

Contract Manufacturer – organization that provide a
manufacturing service

Internal Manufacturer – internal activity controlled by OEM

Production Line – a chain of internal manufacturer activities
controlled by OEM

53

Architecture around NIST model repository

55

Composition of service network

56

Service network analytic model

58

Service network analytic model (SV-AM): key steps

59

1. If Service atomic, invoke its corresponding AM
2. Else (* if service has sub-services *)

a. Recursively invoke SV-AM for every sub-service
b. Aggregate metrics
c. Evaluate constraints, which comprise of:

i. All sub-service constraints
ii. Bounds on Control (decision) variables
iii. Zero-sum flow constraints

3. Return output that comprise of:
a. Aggregated metrics
b. Evaluated constraints
c. For every descendent sub-service, its aggregated metrics &

evaluated constraints

Architecture around NIST model repository

Example: Pareto front computation

61

Initial deployment architecture

GIT REST

ATOM IDE

Unity DGMS MP Solvers

GMU Datacenter

NIST Repository in
GitLab

add,
commit,

push

REST call to Analytical
Function, e.g., argmin,

argmax

GitLab
Browser-
based client

System workflow

63

Outline
• DG systems: need, challenges, vision
• DG language & tool example:

• DG Analytics Language (DGAL) & Management System (Unity DGMS)

• DG application example:
• Manufacturing and supply service networks based on model repository

• DG algorithm example:
• Optimizing multistage service networks based on preprocessing and decomposition

• Broader view on DG research: languages/tools, algorithms, applications
• Three grand challenges:

• IoT + DG = (Smart) Cyber Physical Service Networks
• Design (e.g., product, process, architectural, …) + DG = (Smart) Parametric Design
• Public policy (e.g., renewable energy) + DG + Group decision methods = (Smart) public policy

• Conclusions

Problem: cost minimization in
multistage production network

Machine 1

Machine n1

Assembly 1

Machine 1

Machine n2

Assembly 2

Machine 1

Machine n3

Assembly 3

Machine 1

Machine n4

Assembly 4

Machine 1

Machine n5

Assembly 5

Machine 1

Machine n6

Assembly 6

Machine 1

Machine nk-2

Assembly k-2

Machine 1

Machine nk-1

Assembly k-1

Machine 1

Machine nk

Assembly k

Product 3

Product 1

Product 2

Product 4

Product 5

Multi-stage production optimization problem:
• Decision variables:

Ø For every machine: ON flag & thru (or low level
controls)

Ø thru of all flows
• Constraints:

ØFor every machine:
o cost as a function of thru
o thru bounds
o input material qty as a function of output qty

ØZero-sum flow
ØDemand satisfaction

• Objective: minimize total cost

MP Problem Formulation
MINIMIZE total_cost:

SUM{m IN Machines} Cost[m];

SUBJECT TO

machine_operation {m IN Machines}:
MinQty[m] <= Qty[m] <= MaxQty[m];

machine_cost {m IN Machines}:

Active[m] = 0 ==> Cost[m] = 0
ELSE Cost[m] = c3[m]*Qty[m]ˆ3 + c2[m]*Qty[m]ˆ2 + c1[m]*Qty[m] + c0[m];

machine_production {m IN Machines}:
Active[m] = 0 ==> MachQty[m] = 0

ELSE MachQty[m] = Qty[m];

assembly_production {a IN Assemblies}:

AsmQty[a] = SUM{m IN Machines} Production[a,m] * MachQty[m];
product_production {p IN Products}:

Produced[p] = SUM{a IN Assemblies} Output[p,a] * AsmQty[a];
demand_vs_produced {p IN Products}:

Producted[p] >= Demand[p] +
SUM{a IN Assemblies} Resources[a,p] * AsmQty[a];

Intuition behind approximations and
problem decomposition

Machine 1

Machine n1

Assembly 1

Machine 1

Machine n2

Assembly 2

Machine 1

Machine n3

Assembly 3

Machine 1

Machine n4

Assembly 4

Machine 1

Machine n5

Assembly 5

Machine 1

Machine n6

Assembly 6

Machine 1

Machine nk-2

Assembly k-2

Machine 1

Machine nk-1

Assembly k-1

Machine 1

Machine nk

Assembly k

Product 3

Product 1

Product 2

Product 4

Product 5

Principles of Preprocessing & Decomposition

min f(x) s.t. C(x)

of the form:

min f1(x1,y) + … + fn(xn,y) (I)
s.t. C1(x1,y) ⋀… ⋀ Cn(xn,y) ⋀ C0(y)

Problem: x1, … , xn may involve many finite domain or
binary variables

x1
x2

x3 y

x = y È x1 È … È xn

Decomposition Key Idea
Find optimal values for interface variables y and fix to decompose problem.

Define: F1(y) = minx1
f1(y, x1) K1 (y) = ($ x1) C1(y, x1)

: : : :
Fn(y) = minxn

fn(y, xn) Kn (y) = ($ xn) Cn(y, xn)

Step 1

Solve: min F1(y) + … + Fn(y) (II)
s.t. K1(y) ⋀… ⋀ Kn(y) ⋀ C0(y)

Claim:
• A solution to (II) is a partial solution to the original problem, i.e.,

if y* is a solution to (II) then there exists a solution (y*, x1
*, …, xn

*) to (I)

• A solution to the original problem (I) gives a solution to (II), i.e.,
if (y*, x1

*, …, xn
) is a solution to (I) then y is a solution to (II)

Decomposition Key Idea Cont.
Step 2

Solve: minx1
f1(y*, x1) s.t. C1(y*, x1) (1)

: : :
minxn

fn(y*, xn) s.t. Cn(y*, xn) (n)

Claim: Step 1 and Step 2 give a solution to the original problem, i.e.,
if x1

* is a solution to (1), then (y*, x1
*, …, xn

*) is a solution to (I)
: :

xn
* is a solution to (n),

Essentially, Step 1 “decomposes” a (large) combinatorial problem into n (smaller)
combinatorial problems which areeasier to solve.

Problem: F1(y), …, Fn(y) and K1(y), …, Kn(y) may not have
an analytical form to solve (II) using existing
solver technology (e.g., LP, MILP, QP, NLP, etc.)

Approach
Approximate F1, …, Fn and K1, …, Kn using smooth functions for which we can
use efficient solver techniques (LP, NLP, etc.).

Preprocessing:
1. Partition input space y, solve sub-problem exactly to build lookup table
2. Regression analysis to learning smooth approximation of F1, …, Fn, K1, …, Kn

On-line:
1. Solve (II) for y* using approximation for F1, …, Fn and K1 …, Kn

2. Solve (1) … (n) based on y*, find finite domain and binary variables x1 , …, xn

3. Solve original problem (I), where combinatorial part of the problem is fixed
using the solution from Step 2

Online Decomposition Algorithm (ODA)

Offline Online

Decompose
problem into
components

Scan output range
and solve MILP

for optimal config

Create problem
instance based on
dynamic params

Replace static
components with

approximation

Solve approx.
problem to fix

interface variable

Use look-up table
to fix the internal

variables

Solve original
problem without
combinatorics

Use heuristic
search to select

from look-up table

Pause and do heuristic
search whenever any

improved feasible solution to
approx. problem is found

Preprocessed Cost Function

Experimental Results

Outline
• DG systems: need, challenges, vision
• DG language & tool example:

• DG Analytics Language (DGAL) & Management System (Unity DGMS)

• DG application example:
• Manufacturing and supply service networks based on model repository

• DG algorithm example:
• Optimizing multistage service networks based on preprocessing and decomposition

• Broader view on DG research: languages, algorithms, tools/applications
• Three grand challenges:

• IoT + DG = (Smart) Cyber Physical Service Networks
• Design (e.g., product, process, architectural, …) + DG = (Smart) Parametric Design
• Public policy (e.g., renewable energy) + DG + Group decision methods = (Smart) public policy

• Conclusions

Broader overview of my DG research

• DG languages, semantics & reductions
• For DB application developers (SQL, Xquery, JSONiq)
• For software developers (CoJava)
• For domain specific end-users

• DG algorithms
• DG reduction algorithms
• Process optimization by decomposition and pre-processing
• Stochastic optimization of temporal processes through deterministic

approximations
• Regression of n-dimensional piece-wise linear functions
• Classification over multivariate time series
• Top-K recommendations using simulation and regression
• Probabilistic algorithms to optimize recommendation diversity

• DG tools, systems & applications
• Unity DGMS
• Manufacturing, energy & power grids, supply chain, service networks, …
• Package and group recommender systems, e.g., for investment in

infrastructure, renewable energy, production capacity, …

Outline
• DG systems: need, challenges, vision
• DG language & tool example:

• DG Analytics Language (DGAL) & Management System (Unity DGMS)

• DG application example:
• Manufacturing and supply service networks based on model repository

• DG algorithm example:
• Optimizing multistage service networks based on preprocessing and decomposition

• Broader view on DG research: languages/tools, algorithms, applications
• Three grand challenges:

• IoT + DG = (Smart) Cyber Physical Service Networks
• Design (e.g., product, process, architectural, …) + DG = (Smart) Parametric Design
• Public policy (e.g., renewable energy) + DG + Group decision methods = (Smart) public policy

• Conclusions

Question: IoT + ? = Cyber Physical Systems

features Internet SOA IoT
Purpose &
value

Easy
Sharing of web content

Easy integration of
heterogeneous IT systems

Easy development
& operation of cyber
physical systems
(CPS)

Enable
sharing of

Web-content IT web services IoT-enabled cyber
physical services
(CPS)

Enablers: Internet protocols
Stack:
HTML, HTTP, TCP/IP

Web services protocols stack:
• REST or SOAP -service API
• Internet stack

IoT protocols stack

How to
make sense
of it?

Web search Service discovery &
composition:
• WSDL – API description
• UDDI - discovery
• BPEL – composition &

execution

?

Cyber physical systems =
execution of IoT services + DG analytics

- What is happening?
- Why did this happen?
- What will happen if …?
- How should we actuate?

?

Cyber physical systems =
execution of IoT services + DG analytics

Conclusions and future work

• Technical research challenges with impact on
real-world problems

• Main goal: a robust DGMS
• DBMS have revolutionized the development

of modern Information Systems
• Can DGMS have similar impact on the

development of Decision Guidance Systems?
• Can DGMS significantly simplify the

development of IoT cyber physical systems?

Conclusions and future work
• Technical research challenges with impact on

real-world problems
• Main goal: a robust DGMS
• DBMS have revolutionized the development

of modern Information Systems
• Can DGMS have similar impact on the

development of Decision Guidance Systems?
• Can DGMS significantly simplify the

development of IoT cyber physical systems?

Questions ???

