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What is it about?

Decision Guidance (DG) systems are a class of decision support 
systems geared to 

• elicit knowledge from domain experts and 
• provide actionable recommendations to human decision-makers, 
• with the goal of arriving at the best possible course of action. 



Examples of Decision Guidance Systems:
Supply Chain Management



Examples of Decision Guidance Systems: 
Renewable Power and Storage

GMU pilot project for Dominion Virginia Power

U.S. Energy Information Administration (EIA)



Examples of Decision Guidance Systems: 
Tesla prep and body shop 

GMU project for the National Institute of Standards & Technology



































Outline
• DG systems: need, challenges, vision
• DG language & tool example: 

• DG  Analytics Language (DGAL) & Management System  (Unity DGMS)

• DG application example:
• Manufacturing and supply service networks based on model repository

• DG algorithm example: 
• Optimizing multistage service networks based on preprocessing and decomposition

• Broader view on DG research: languages/tools, algorithms, applications
• Three grand challenges: 

• IoT + DG = (Smart) Cyber Physical Service Networks
• Design (e.g., product, process, architectural, …) + DG = (Smart) Parametric Design
• Public policy (e.g., renewable energy) + DG + Group decision methods = (Smart) public policy

• Conclusions 



Decision Guidance Systems (DGS)

DGS need to
• use and mine large amounts of data
• elicit knowledge about model structure from domain experts
• learn deterministic or stochastic models
• elicit metrics, KPI and decision objectives
• perform analysis tasks, incl. monitoring, diagnosis, prediction, 

optimization
• explain actionable recommendations to decision-makers
• solicit decision-makers feedback for iterative improvement



Tools ...

Domain Specific Modeling & Analytics GUI Interfaces / Mappers

Descriptive
Analytics 
Tasks

Predictive
Analytics 
Tasks

Diagnostic
Analytics 
Tasks

Prescriptive/
Optimization
Analytics 
Tasks

Learning/Mining:
PMML, PFA, ...

Simulation:
Modelica-based,  

Simulink, ...

DBMS: SQL, 
XQuery, 
JSONiq

Optimization:
MP/CP using 

OPL, AMPL, ... 

?
TODAY every task is 
implemented:

• one off
• from scratch
• non-reusable
• non-modular
• requires math, OR, IT &  

domain-specific expertise
• high cost
• long development cycle
• difficult to modify/extend



Tools ...

Reusable, extensible, modular KB of analytic models (AM)
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Background: JSON (Java Script Object Notation) and 
JSONiq query language

Data format/
model

Query/data 
manipulation 
language

Type of data Used for Comments

Relational 
(tabular)

SQL • structured
• flat tables
• human readable

Relational databases, such 
as Oracle, SQL server

• dominant in Buz Info
Sys 

• Not as data interchange 
format

XML XQuery • semi-structured
• User-defined tags, HTML-

like for data
• hierarchical
• human and machine

readable

• data interchange
• web-services

• Popular
• Verbose

JSON JSONiq
= 
SQL for 
NoSQL stores

• semi-structured
• objects = 

key-values pairs
• hierarchical
• human and machine 

readable
• compact as compared to 

XML

• lightweight data 
interchange

• web-services
• REST  SOA
• IoT stack
• Data in NoSQL 

stores, incl. 
MongoDB, 

• Highly popular
• Identical w/JS data 

model
• similar Python & Java 

data models 
• Dominant in REST, IoT, 

asynchronous 
client/server 
communication, 
replacing XML



P: fixed params
V: control params AM

M: metrics
C:  constraints



AM
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AM
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P: params
V: control vars PM

M: metrics
C:  constraintsAM
M: metrics
C:  constraints

P: fixed params
V: control params



AM
M: metrics
C:  constraints

P: fixed params
V: control params



P: fixed params
V: ???

O: objective

AM

Minimize/
Maximize

P: params
V: optimal control

P: fixed params
V: control params AM

M: metrics
C:  constraints



Soundness and Completeness of Reduction

semantics

reduction

min f (V)
s.t. C (V)

symbolic 
output 
structure

I(V)

q,d Φ(q,d) Φ’(q,d)?
=

reconstruction

optimization solver



Soundness and Completeness of Reduction

semantics

reduction

min f (V)
s.t. C (V)

symbolic 
output 
structure

I(V)

q,d Φ(q,d) Φ’(q,d)?
=

reconstruction

optimization solver

Theorem:
The reduction procedure is

1. sound:
Φ’(q,d) Φ(q,d) 

2. complete:
Φ’(q,d) Φ(q,d)



P: fixed params
V: ???

O: objective

AM
Minimize/ 
Maximize

P: params
V: optimal control

P: ???
V: ???

LS: training 
set of input-
output pairs

Learn 
Parameters

P: best fit params
V: ???

AM

P: fixed params
V: control params AM

M: metrics
C:  constraints



P: fixed params
V: control params

Stochastic

AM
M: metrics
C:  constraints



P: params
V: control vars

AM
(stochastic)
prediction

P: params
V: control vars

Stochastic

AM
M: metrics
C:  constraints

E(M): mean & std. dev.  of  metrics
P(C):  prob. of constraint satisfaction



DGAL summary:

• Is based on KB of analytic (performance) models (AMs) that:
• Express constraints and metrics of interest as a function of fixed & 

control parameters (of a process)
• Are independent of analytical tasks & tools/algorithms

• Allows reuse of AMs as operands to diverse analytics operators (forming 
analytics algebra on AMs) :

• Simulation 
• Prediction
• Deterministic or stochastic optimization
• Learning parameters of AM for regression or classification
• …..

• Performs these operators/tasks by automatic reduction to specialized low-level 
models and algorithms, w/out the need to manually craft low-level models.

• Uses query / data manipulation language (JSONiq) over JSON data format to
• Express AMs
• Express analytics algebra operators / tasks



Unity DGMS architecture 



Unity DGMS: application management layer



Unity DGMS: tool management layer 



Unity DGMS: analytics management layer



Compiling Optimization Queries
Six steps:

1. Reusable Analytic Model 
Resolution

2. Source-to-Source 
Transformation

3. Symbolic Execution
4. Target Model Generation
5. Target Solver Execution
6. Input Instantiation

Steps 1-3 & 6 (tasks) can be used to 
implement other DGAL operators: 
e.g. learn & predict



Preliminary performance evaluation

• Hypothesis: Execution time 
overhead of compiled reusable 
analytic models (into task- and tool-
specific models) is within a constant 
factor of that of manually crafted 
ones

• Method: Compare execution times 
of compiled DGAL model versus 
manually crafted OPL model on 
randomized input pairs

• Preliminary Results: Compiled 
DGAL models are currently 2.3 
times slower than manually crafted 
OPL models

• We are investigating techniques to 
improve performance of compiled 
models
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Heat sink (HS) assembly manufacturing & supply service network 

51

Alumina (L2)

Accessories (L2)
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Powder

Aluminum	
Plate

Finished
Heat	

Sink	Part
Demand (L1)

Accessory	
Package

Aluminum Plate Contract 
Manufacture (L2)

Smelting (L2)

HS Base Contract 
Manufacture (L2)

HS Shearing 
(L3)

Anodizing 
(L3)

CNC 
Machining 
(L3)

Quality 
Inspection 
(L3)

Assembly 
(L3)

Supply (L1)

Manufacturing (L1)

HS Base Shearing 
(L3)

HS Base Drilling (L3)
HS Base PL (L2)

Heat	
Sink	
Base

HS PL (L2)

Heat Sink Supply Chain (L0)





Defining the nodes in the service network

Vendor – organization that provides a finished product

Contract Manufacturer – organization that provide a 
manufacturing service

Internal Manufacturer – internal activity controlled by OEM

Production Line – a chain of internal manufacturer activities 
controlled by OEM 

53



Architecture around NIST model repository  
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Composition of service network
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Service network analytic model

58



Service network analytic model (SV-AM): key steps

59

1. If   Service atomic, invoke its corresponding AM
2. Else (* if service has sub-services *)

a. Recursively invoke SV-AM for every sub-service
b. Aggregate metrics 
c. Evaluate constraints, which comprise of:

i. All sub-service constraints
ii. Bounds on Control (decision) variables 
iii. Zero-sum flow constraints

3. Return output that comprise of:
a. Aggregated metrics
b. Evaluated constraints
c. For every descendent sub-service, its aggregated metrics & 

evaluated constraints



Architecture around NIST model repository  



Example: Pareto front computation
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Initial deployment architecture

GIT REST

ATOM IDE

Unity DGMS MP Solvers

GMU Datacenter

NIST Repository in 
GitLab

add,
commit,

push

REST call to Analytical 
Function, e.g., argmin, 

argmax

GitLab
Browser-
based client



System workflow

63
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Problem: cost minimization in 
multistage production network
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Multi-stage production optimization problem:
• Decision variables: 

Ø For every machine:  ON flag & thru (or low level 
controls)

Ø thru of all flows
• Constraints:

ØFor every machine:
o cost as a function of thru
o thru bounds  
o input material qty as a function of output qty

ØZero-sum flow 
ØDemand satisfaction

• Objective: minimize total cost



MP Problem Formulation
MINIMIZE total_cost:

SUM{m IN Machines} Cost[m];

SUBJECT TO

machine_operation {m IN Machines}:
MinQty[m] <= Qty[m] <= MaxQty[m];

machine_cost {m IN Machines}:

Active[m] = 0 ==> Cost[m] = 0
ELSE Cost[m] = c3[m]*Qty[m]ˆ3 + c2[m]*Qty[m]ˆ2 + c1[m]*Qty[m] + c0[m];

machine_production {m IN Machines}:
Active[m] = 0 ==> MachQty[m] = 0

ELSE MachQty[m] = Qty[m];

assembly_production {a IN Assemblies}:

AsmQty[a] = SUM{m IN Machines} Production[a,m] * MachQty[m];
product_production {p IN Products}:

Produced[p] = SUM{a IN Assemblies} Output[p,a] * AsmQty[a];
demand_vs_produced {p IN Products}:

Producted[p] >= Demand[p] +
SUM{a IN Assemblies} Resources[a,p] * AsmQty[a];



Intuition behind approximations and 
problem decomposition

Machine 1

Machine n1

Assembly 1

Machine 1

Machine n2

Assembly 2

Machine 1

Machine n3

Assembly 3

Machine 1

Machine n4

Assembly 4

Machine 1

Machine n5

Assembly 5

Machine 1

Machine n6

Assembly 6

Machine 1

Machine nk-2

Assembly k-2

Machine 1

Machine nk-1

Assembly k-1

Machine 1

Machine nk

Assembly k

Product 3

Product 1

Product 2

Product 4

Product 5



Principles of Preprocessing & Decomposition

min f(x) s.t. C(x)

of the form:

min  f1(x1,y) + … +  fn(xn,y) (I)
s.t.  C1(x1,y) ⋀… ⋀ Cn(xn,y) ⋀ C0(y)

Problem: x1, … , xn may involve many finite domain or 
binary variables

x1
x2

x3 y

x = y È x1 È … È xn



Decomposition Key Idea
Find optimal values for interface variables y and fix to decompose problem.

Define: F1(y) = minx1
f1(y, x1) K1 (y) = ($ x1) C1(y, x1)

: : : :
Fn(y) = minxn

fn(y, xn) Kn (y) = ($ xn) Cn(y, xn)

Step 1

Solve: min F1(y) + … + Fn(y) (II)
s.t. K1(y) ⋀… ⋀ Kn(y) ⋀ C0(y)

Claim:
• A solution to (II) is a partial solution to the original problem, i.e.,

if y* is a solution to (II) then there exists a solution (y*, x1
*, …, xn

*) to (I)

• A solution to the original problem (I) gives a solution to (II), i.e.,
if (y*, x1

*, …, xn
*) is a solution to (I) then y* is a solution to (II) 



Decomposition Key Idea Cont.
Step 2

Solve: minx1  
f1(y*, x1)   s.t.   C1(y*, x1) (1)

:                                : :
minxn

fn(y*, xn)   s.t.   Cn(y*, xn) (n)

Claim: Step 1 and Step 2 give a solution to the original problem, i.e.,
if    x1

* is a solution to (1), then       (y*, x1
*, …, xn

*) is a solution to (I)
:                            :

xn
* is a solution to (n),

Essentially, Step 1 “decomposes” a (large) combinatorial problem into n (smaller) 
combinatorial problems which areeasier to solve.

Problem:     F1(y), …, Fn(y) and K1(y), …, Kn(y) may not have 
an analytical form to solve (II) using existing 
solver technology (e.g., LP, MILP, QP, NLP, etc.)



Approach
Approximate F1, …, Fn and K1, …, Kn using smooth functions for which we can 
use efficient solver techniques (LP, NLP, etc.).

Preprocessing:
1. Partition input space y, solve sub-problem exactly to build lookup table
2. Regression analysis to learning smooth approximation of F1, …, Fn, K1, …, Kn

On-line:
1. Solve (II) for y* using approximation for F1, …, Fn and K1 …, Kn

2. Solve (1) … (n) based on y*, find finite domain and binary variables x1 , …, xn

3. Solve original problem (I), where combinatorial part of the problem is fixed 
using the solution from Step 2



Online Decomposition Algorithm (ODA)

Offline Online

Decompose 
problem into 
components

Scan output range 
and solve MILP 

for optimal config

Create problem 
instance based on 
dynamic params

Replace static 
components with 

approximation

Solve approx. 
problem to fix 

interface variable

Use look-up table 
to fix the internal 

variables

Solve original 
problem without 
combinatorics

Use heuristic 
search to select 

from look-up table

Pause and do heuristic 
search whenever any

improved feasible solution to 
approx. problem is found



Preprocessed Cost Function



Experimental Results
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Broader overview of my DG research

• DG languages, semantics & reductions
• For DB application developers (SQL, Xquery, JSONiq)
• For software developers (CoJava)
• For domain specific end-users

• DG algorithms
• DG reduction algorithms
• Process optimization by decomposition and pre-processing
• Stochastic optimization of temporal processes through deterministic 

approximations
• Regression of n-dimensional piece-wise linear functions
• Classification over multivariate time series
• Top-K recommendations using simulation and regression
• Probabilistic algorithms to optimize recommendation diversity 

• DG tools, systems & applications
• Unity DGMS
• Manufacturing, energy & power grids, supply chain, service networks, …
• Package and group recommender systems, e.g., for investment in  

infrastructure, renewable energy, production capacity, …



Outline
• DG systems: need, challenges, vision
• DG language & tool example: 

• DG  Analytics Language (DGAL) & Management System  (Unity DGMS)

• DG application example:
• Manufacturing and supply service networks based on model repository

• DG algorithm example: 
• Optimizing multistage service networks based on preprocessing and decomposition

• Broader view on DG research: languages/tools, algorithms, applications
• Three grand challenges: 

• IoT + DG = (Smart) Cyber Physical Service Networks
• Design (e.g., product, process, architectural, …) + DG = (Smart) Parametric Design
• Public policy (e.g., renewable energy) + DG + Group decision methods = (Smart) public policy

• Conclusions 



Question: IoT + ? = Cyber Physical Systems

features Internet SOA IoT
Purpose & 
value

Easy 
Sharing of web content

Easy integration of 
heterogeneous IT systems

Easy development 
& operation of cyber 
physical systems 
(CPS) 

Enable
sharing of

Web-content IT web services IoT-enabled cyber 
physical services 
(CPS) 

Enablers: Internet protocols
Stack: 
HTML, HTTP, TCP/IP 

Web services protocols stack:
• REST or SOAP -service API
• Internet stack

IoT protocols stack

How to 
make sense 
of it?

Web search Service discovery & 
composition:
• WSDL – API description
• UDDI - discovery
• BPEL – composition & 

execution

?



Cyber physical systems = 
execution of IoT services + DG analytics

- What is happening?
- Why did this happen?
- What will happen if …?
- How should we actuate?

?



Cyber physical systems = 
execution of IoT services + DG analytics



Conclusions and future work

• Technical research challenges with impact on 
real-world problems

• Main goal: a robust DGMS 
• DBMS have revolutionized the development 

of modern Information Systems
• Can DGMS have similar impact on the 

development of Decision Guidance Systems?
• Can DGMS significantly simplify the 

development of IoT cyber physical systems?



Conclusions and future work
• Technical research challenges with impact on 

real-world problems
• Main goal: a robust DGMS 
• DBMS have revolutionized the development 

of modern Information Systems
• Can DGMS have similar impact on the 

development of Decision Guidance Systems?
• Can DGMS significantly simplify the 

development of IoT cyber physical systems?

Questions ???


