
Conceptual modeling
in

agile information systems development

Antoni Olivé
Universitat Politècnica Catalunya‐BarcelonaTech

1

Questions without definitive answers

Is conceptual modeling
a necessary or an optional

activity in information systems
development?

agile

2

What is it?

3

“The main purpose of conceptual
modeling is to improve communication
between the parties involved in the
development process”

“Conceptual data modeling is an
indispensable part of information system
design and development”

Motivation

4

“...might be used to facilitate the design and
implementation of an information system”

“Once you have the conceptual design, all
the other design and implementation
activities can and should be grounded in
it...”

Motivation

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

…
Working software over comprehensive documentation
…

That is, while there is value in the items on the right, we value the items on the left more.

Manifesto for agile software development

5

Motivation

6

To: antoni.olive
From: a student
Body:

Dear professor,

I've started to develop my final career project in the company.

Here they use agile development, and they do not generate any
kind of documentation, and the requirements engineering and
overall design are not very deep (I understand that this is their
development method).

My idea of the project is to approach it in this way...

Objective of the talk

Is conceptual modeling
a necessary or an optional

activity in information systems
development?

agile

7

Implications

Practice
Do we need to perform conceptual modeling?

Teaching
Do we have to teach conceptual modeling?

Research
Which is the nature and role of conceptual modeling?

In (agile) information systems development

8

Outline

• Back to basics: the need of requirements

• What are the conceptual schemas? Do we really need them?

• The main driving force of formal conceptual schemas

• Conceptual modeling in agile development. Is it needed?

• Conclusions

9

You cannot develop a system unless you know its requirements

Objectives

Wish to achieve

Requirements

Can be achieved
with a system that has

System

Are the input for
the development of

Is deployed into

makes unhappy

The system’s lifecycle

makes happy

evolves

10

The principle of necessity
of requirements

To develop an information system
it is necessary

to define its requirements

Before software can be designed, programmed, coded,
its requirements must first be reasonably well understood.

Are there exceptions?
11

12

Infinite monkey theorem

A monkey
• hitting keys at random on a typewriter keyboard
• for an infinite amount of time
• will almost surely type a given text,
• such as the complete works of William

Shakespeare.

13

Infinite programmer theorem

A programmer
• hitting keys at random on a typewriter keyboard
• for an infinite amount of time
• will almost surely type a a program,
• that satisfies the stakeholders’ needs

Two types of requirements

• Functional

• Quality

The focus of this talk

14

The functions of an information system

State

change

Information
system

Domain

represents changes

action

output

15

• Domain concepts represented in the IS
• Definitions
• Integrity Constraints
• Events/Actions:

– Triggering conditions
– Constraints
– Effect on the state
– Output

Functional requirements

16

The principle of necessity
of functional requirements

To develop an information system
it is necessary

to define its functional requirements

17

Outline

• Back to basics: the need of requirements

• What are the conceptual schemas? Do we really need them?

• The main driving force of formal conceptual schemas

• Conceptual modelling in agile development. Is it needed?

• Conclusions

18

Implicit
Explicit

Informal

Formal

Verifiable

Non‐
verifiable

(Verifiable)

(Individual)

(Shared)

Non‐
persistent Persistent

Classification of functional requirements

19

Four key classifications of
functional requirements

• Formality

• Verifiability

• Explicitness

• Persistency

20

Formality

Degree of formality of the language

Informal Formal

Natural
language LogicUML/OCL

Structured
natural
language

Semi‐formal

User
stories

21

Verifiability

Non-verifiable Verifiable

Verifiable:
A person or a machine can check that the software meets the requirement

OCL
constraint

Ambiguous
requirement

Partly
ambiguous
requirement

22

Explicitness

Implicit Explicit

Explicit: Made public in some form

Assumed
requirements

SRS
document

23

Persistency

Non-persistent Persistent

Verbal

Paper document

Computer file

24

Implicit
Explicit

Informal

Formal

Verifiable

Non‐
verifiable

(Verifiable)

(Individual)

(Shared)

Non‐
persistent Persistent

Classification of functional requirements

25

Functional requirements to be
implemented must be made verifiable

Implicit
Explicit

Informal

Formal

Verifiable

Non‐
verifiable

(Verifiable)

(Individual)

(Shared)

Non‐
persistent Persistent

26

Functional requirements to be
implemented must be made explicit

Implicit
Explicit

Informal

Formal

Verifiable

Non‐
verifiable

(Verifiable)

(Individual)

(Shared)

Non‐
persistent Persistent

27

Implicit
Explicit

Informal

Formal

Verifiable

Non‐
verifiable

(Verifiable)

(Individual)

(Shared)

Non‐
persistent Persistent

Conceptual schema =
Explicit, verifiable functional reqs.

28

29

To develop an information system
it is necessary

to define its functional requirements

The principle of necessity
of conceptual schemas

To develop an information system
it is necessary

to define its conceptual schema

…conceptual modelers:

(1) describe structure models in terms of entities, relationships, and
constraints;

(2) describe behavior or functional models in terms of states,
transitions among states, and actions performed in states and
transitions; and

(3) describe interactions and user interfaces in terms of messages
sent and received and information exchanged.

http://www.conceptualmodeling.org/ConceptualModeling.html

“Official” definitions

30

… conceptual-model diagrams:

• …

• in some cases automatically generate (parts of)
the software application.

“Official” definitions

http://www.conceptualmodeling.org/ConceptualModeling.html

31

Outline

• Back to basics: the need of requirements

• What are the conceptual schemas? Do we really need them?

• The main driving force of formal conceptual schemas

• Conceptual modeling in agile development. Is it needed?

• Conclusions

32

Implicit
Explicit

Informal

Formal

Verifiable

Non‐
verifiable

(Verifiable)

(Individual)

(Shared)

Non‐
persistent Persistent

Conceptual schemas:
Formal or informal?

33

Formalization?
A cost/benefit analysis

Cost Benefit

34

User
interface Domain and database layer

Execution platform

Verifiable

From requirements to implementation

Manually
obtained

Design and
construction

Automatically
obtained

Model
transformation

Formal

35

Outline

• Back to basics: the need of requirements

• What are the conceptual schemas? Do we really need them?

• The main driving force of formal conceptual schemas

• Conceptual modeling in agile development. Is it needed?

• Conclusions

36

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Manifesto for agile software development

37

Conceptual modeling in
agile software development

Two views

Working software over comprehensive documentation

The focus of this talk

38

In consultation with the customer or
product owner, the team divides up the
work to be done into functional increments
called “user stories”.

Functional requirements in
agile development:

User stories

39

User stories

As a role I want feature so that reason

As a bank account holder
I want to be informed if my monthly balance

is projected to go to zero or below
so that I can arrange for an overdraft

40

One thing the customer wants the system to do.
…
Should be verifiable.

User stories

41

Implicit
Explicit

Informal

Formal

Verifiable

Non‐
verifiable

(Verifiable)

(Individual)

(Shared)

Non‐
persistent Persistent

User stories

Conceptual schema
42

The principle of necessity
of conceptual schemas

To develop an information system
it is necessary

to define its conceptual schema

in an agile way

43

Alistair Cockburn’s
Cooperative game principle

Software development is a cooperative game…
The primary goal of the game is to deliver useful,

working software.
The secondary goal is to set up for the next game.
The next game may be:
‐ to alter or replace the system or
‐ to create a neighboring system.

Documentation
44

Implicit
Explicit

Informal

Formal

Verifiable

Non‐
verifiable

(Verifiable)

(Individual)

(Shared)

Non‐
persistent Persistent

Conceptual schemas:
Persistent or non-persistent?

45

Persistent or non-persistent?
A life-cycle cost analysis

CP = Cost of initial documentation +
N * Average cost of updating documentation
N : Number of system’s functional updates

Cost

Time

CP

46

CP = Cost of initial documentation +
N * Average cost of updating documentation

Persistent or non-persistent?
A life-cycle cost analysis

CNP = M * Average cost of recovering requirements

N : Number of system’s functional updates

M : Number of times functional requirements are needed and not available

47

Persistent or non-persistent?
A life-cycle cost analysis

Cost

Time

CP

CNP

Technical
debt

?

48

… A metaphor referring to the eventual consequences of
poor … software development. The debt can be thought
of as work that needs to be done before a particular job
can be considered complete. If the debt is not repaid,
then it will keep on accumulating interest, making it
hard to implement changes later on.

Common causes of technical debt :

Lack of documentation, where code is created without
necessary supporting documentation. That work to create the
supporting documentation represents a debt that must be paid.

Technical debt

49

Non-persistent may be better when…

CNP = M * Average cost of recovering requirements

M : Number of times functional requirements are needed and not available

• Low cost

• Short life cycle
• Few people
• Stable team
• Team remembers everything always

50

How to decrease the initial cost

May remain non-persistent requirements that:

• Can be easily observed in the system
• Can be easily recovered
• Are common-sense
• Are obvious (dependent)

51

Sometimes requirements
are easily observed in the system

But not always

52

Agile conceptual schemas?

53

• Domain concepts represented in the IS
• Definitions
• Integrity Constraints
• Events/Actions:

– Triggering conditions
– Constraints
– Effect on the state
– Output

Agile persistent conceptual schemas?

(*): When may not be known/accessible
(**): When not externally visible
(***): When not externally visible and independent

(*)

(**)

(***)

54

Outline

• Back to basics: the need of requirements

• What are the conceptual schemas? Do we really need them?

• The main driving force of formal conceptual schemas

• Conceptual modeling in agile development. Is it needed?

• Conclusions

55

Conclusions (I)

To develop an information system
it is necessary

to define its conceptual schema

The principle of necessity applies also to agile methods:

Conceptual modeling
is a necessary activity

in information systems development

56

Key distinctions in conceptual schemas:

• Informal/formal
– Formalization enables automatic processing

• Non‐persistent/persistent
– Has non‐obvious cost implications
– Agile conceptual schemas may be an appropriate
persistence degree.

Conclusions (II)

57

58

Thanks for your attention

