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D = 0.3
D = 0.3

D = 1

David W. Jacobs, Daphna Weinshall and Yoram Gdalyahu, Classification with Nonmetric Distances: Image 
Retrieval and Class Representation, IEEE Trans. Pattern Anal. Mach. Intell, 22(6), pp. 583-600, 2000. 
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Human Judgments …

… often don’t fit in an Euclidean world.

D = 0.3 D = 0.3

D = 1
A B

C

D(A,B) < D(A,C) + D(C,B)

violation of the

triangle inequality
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Learning about the world

Human knowledge grows 

in the debate between

-those who see the patterns, and

-those who know the universal laws
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Automatic Pattern Recognition

RepresentationGeneralization Sensor

BB

AA

Can we replace our recognition of real world objects

by a formal system, also when our mental system is
non-Euclidean? How to train? How to apply? 
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Blob Recognition

Which group?

A

B

C
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Object Recognition 

Airplane

Bicycle

Bus

Car

Train
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Pattern Recognition: Speech
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Experts confused by details
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The diagnostic classification accuracy of a 

group of doctors. Sample size is 100.

F.T de Dombal, Computer-assisted diagnosis, 
in: Principals and practice of medical 

computing, Whitby and Lutz (eds.), Churchill 
Livingstone, London, 1971, pp 179 - 199.

P
e
rf
o
rm
a
n
ce
 �

8 June 2010 10ICEIS 2010

P
e
rf
o
rm
a
n
ce
 �

Number of details �

Computers confused by details

Character recognition classification 
performance as a function of the number of 
n-tuples used.

J.R. Ullmann, 
Experiments with the n-tuple method of 
pattern recognition, 
IEEE Trans. on Computers, 1969, 1135-1136
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Pattern Recognition: Shapes

Examples of objects for different classes

Object of unknown class to be classified

A B?
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Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

perimeter
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perimeter

area

Feature Representation
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Measuring Human Relevant Information

A

B

AAA AAA BB B B

Nearest neighbours sorted:
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Pixel Representation

Features
Shapes

Moments
Fourier descriptors

Faces
Morphology

Pixels
1x

2x

16 x 16
R256

Pixels are more general, initially complete representation

Large datasets are available � good results for OCR
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Peaking Phenomenon, Overtraining
Curse of Dimensionality, Rao’s Paradox

feature set size (dimensionality)

classifier complexity

training set size

∞

Classification 
error

Pattern Recognition Paradox
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The Connectivity Problem in the Pixel Representation

Dependent (connected) measurements are represented independently.
The dependency has to be refound from the data.

x3x2x1

Image

X1

X2

X3

Images in pixel space
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The Connectivity Problem in the Pixel Representation

Feature Space

image_1 image_3
image_2

class subspace

Interpolation does not yield valid objects 8 June 2010 18ICEIS 2010

Representations

Features        – details lost

Pixels            – no connectivity

Dissimilarities – shape dependent



8 June 2010 19ICEIS 2010

Examples Dissimilarity Measures

A B

Dist(A,B):

a ∈ A, points of A
b ∈ B, points of B
d(a,b): Euclidean distance

D(A,B) = max_a{min_b{d(a,b)}}

D(B,A) = max_b{min_a{d(b,a)}}

Hausdorff Distance (metric): 

DH = max{max_a{min_b{d(a,b)}} , max_b{min_a{d(b,a)}}}

Modified Hausdorff Distance (non-metric):

DM = max{mean_a{min_b{d(a,b)}},mean_b{min_a{d(b,a)}}}

maxB

A

max

B

A

D(A,B) ≠ D(B,A) 
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Examples Dissimilarity Measures

Matching new objects to various templates:

class(x) = class(argminy(D(x,y)))

Dissimilarity measure appears to be non-metric.

A.K. Jain, D. Zongker, Representation and recognition of handwritten digit  using 
deformable templates, IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391.
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Dissimilarity Representation
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D

The traditional Nearest Neighbor rule (template matching) finds:
label(argmintrainset{dxi}) , 

without using DT. Can we do any better?

Dissimilarities dij between

all training objects   

Training set 
B

A

) d d d d d d d (d x7x6x5x4x3x2x1x =

Unlabeled object x to be classified

Not used by NN Rule
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Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

D(x,xA1)

D
(x
,x

B
1
)

Dissimilarity Representation
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Dissimilarities – Possible Assumptions

1. Positivity: dij ≥ 0

2. Reflexivity: dii = 0

3. Definiteness:  dij = 0 objects i and j are identical

4. Symmetry:      dij = dji

5. Triangle inequality: dij < dik + dkj

6. Compactness: if the objects i and j are very similar 
then dij < δ.

7. True representation: if dij < δ then the objects i and j
are very similar.

8. Continuity of d.

M
e
tr
ic
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Alternatives for the Nearest Neighbor Rule
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Dissimilarities dij between

all training objects   

Training set 
B

A

) d d d d d d d (d x7x6x5x4x3x2x1x =

Unlabeled object x to be classified

1. Dissimilarity Space

2. Embedding

Pekalska, The dissimilarity 
representation for PR.
World Scientific, 2005.
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Alternative 1: Dissimilarity Space





























=

 77 76 75 74 7372 71

 67 66 65 64 63 62 61

 57 56  55 54 53 52 51

 47 46 45 44 43 42 41

 37 36 35 34 33 32 31

 27 26 25 24 23 22 21

 17 16 15 14  13 12 11

T

ddddddd

ddddddd

ddddddd

ddddddd

ddddddd

ddddddd

ddddddd

D
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r1 r2 r3

Dissimilarities

Selection of 3 objects for representation

B

A

r1(d1)

r2(d4)

r3(d7)

Given labeled training set

Unlabeled object to be classified
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Dissimilarity Space Classification ���� Nearest Neighbor Rule

Modified Haussdorff distance on contours of digits

Dissimilarity based classification outperforms the nearest neighbor rule.
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Embedding

Training set 

B

A � Dissimilarity matrix D   � X

Is there a feature space for which Dist(X,X) = D ?

1x

2x

Position points in a vector space such 
that their Euclidean distances � D
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Embedding
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Euclidean  - Non Euclidean  - Non Metric
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Non-metric distances

14.9

7.8 4.1

object 78

object 419

object 425

Bunke’s Chicken Dataset

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

µA µB–

x

σA σB

A B
C

Weighted-edit distance for strings Single-linkage clustering

2
B

2
A

2

BAB)J(A,
σ+σ
µ−µ

= 0C)J(A, = largeB)J(A, =
B)J(A,smallB)J(C, ≠=

Fisher criterion
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(Pseudo-)Euclidean Embedding

m×m D is a given, imperfect dissimilarity matrix of training objects.

Construct inner-product matrix:

Eigenvalue Decomposition , 

Select k eigenvectors:                        (problem:  Λk< 0)

Let ℑk be a k x k diag. matrix, ℑk(i,i) = sign(Λk(i,i))

Λk(i,i) < 0 → Pseudo-Euclidean

n×m Dz is the dissimilarity matrix between new objects and the training set.

The inner-product matrix: 

The embedded objects: 

JJDB (2)
2
1−= 11m

1IJ −=
TQQB Λ=

2
1

kkQX Λ=

)JD-J(DB )2(T
n
1(2)

z2
1

z 11−=

kkkz
2
1

QBZ ℑΛ= −
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PES: Pseudo-Euclidean Space (Krein Space)

If D is non-Euclidean, B has p positive and q negative eigenvalues.

A pseudo-Euclidean space ε with signature (p,q), k =p+q, is a non-
degenerate inner product space ℜk = ℜp ⊕ ℜq such that:
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Pseudo Euclidean Space

22
ij i jd = −x x

2 2
2 p p q q
ij i j i jd = − − −x x x x

Pseudo Euclidean embedding D � {Xp,Xq}

Euclidean embedding D � X

‘Positive’ and ‘negative’ space,

Compare Minkowsky space in relativity theory 
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Dissimilarity based classification procedured compared

1. Nearest Neighbour Rule

2. Reduce training set to representation set 

⇒ dissimilarity space

3. Embedding:Select large Λii > 0 ⇒ Euclidean space

Select large |Λii| > 0  → pseudo-Euclidean space
}

B

A
Training set

Test object x

� Dissimilarity matrix D

� Dissimilarities dx with training set

discriminant function
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Three Approaches Compared for the Zongker Data

Dissimilarity Space equivalent to Embedding better than Nearest Neighbour Rule
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Non-Euclidean Representations

• Why do we have them?

• Are they essential?

• Can we build classifiers for them?
(to some extend)

• Can we transform them into Euclidean representations?
(Yes, but at the cost of performance loss)

Beyond Features
Similarity-based Pattern Analysis and Recognition
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Computational Noise

Even for Euclidean distance matrices zero eigenvalues
may show negative, e.g:

- X = N(50,20) : 50 points in 20 dimensions

- D = Dist(X):     50 x 50 distance matrix

- Expected: 49-20 = 29 zero eigenvalues

- Found: 15 negative eigenvalues
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Lack of information

1800: 

Crossing the Jostedalsbreen was impossible.

Travelling around (200 km) lasted 5 days.

Untill the shared point X was found.

People could visit each other in 8 hours.

D(V,J) = 5 days

D(V,X) = 4 hours 

D(X,J) = 4 hours
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Graph Matching ���� Dissimilarities

A

D

E
B

F

C

E

D

C

BF

Representation by Connected Graphs

Graph ( Nodes, Edges, Attributes )

Distance (Graph_1, Graph_2 )

8 June 2010 40ICEIS 2010

Intrinsicly Non-Euclidean Dissimilarity Measures
Single Linkage

Distance(Table,Book) = 0

Distance(Table,Cup) = 0

Distance(Book,Cup) = 1

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

Single-linkage clustering
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Boundary distances

A set of boundary distances may characterize sets of datapoints:

Distances � features
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Intrinsicly Non-Euclidean Dissimilarity Measures
Mahalanobis

Pairwise comparison between 

differently shaped data distributions

Different pairs � different comparison frameworks

� non-Euclidean
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Intrinsicly Non-Euclidean Dissimilarity Measures
Invariants

Object space

Non-metric object distances

due to invariants

A

B

C

D(A,C) > D(A,B) + D(B,C)
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Intrinsicly Non-Euclidean Dissimilarity Measures

Non-Euclidean human relations
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Objects may have an ‘inner life’

In dissimilarity measures the ‘inner life’ of objects may be 
taken into account (e.g. invariants).

� Objects cannot be represented anymore as points

� Non-Euclidean dissimilarities
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Conclusions

• Pseudo Euclidean Space (PES) is sometimes informative 
(corrections are not helpful).

• The corresponding problems may be intrinsic non-Euclidean

• Classifiers for non-Euclidean data have to be studied further


