
The Model Driven (R)evolutionThe Model Driven (R)evolution
Richard Mark Soley, Ph.D.

Chairman and CEO
Object Management Group, Inc.

Modeling Changes Everything!Modeling Changes Everything!

• Throw out those pesky objects!
• Toss away your silly compilers!
• No more boring coding!
• All your software pain gone forever!

It’s a REVOLUTION!

Everything Old is New AgainEverything Old is New Again
• Unfortunately I’m old enough to remember

– Artificial Intelligence
– Object Technology
– Distributed Computing
– XML
– Web Services
– Enterprise Service Bus
– Service Oriented Architecture

• This technology does everything! It makes
miracles, changes water to wine…

Move to Model Driven Everything!Move to Model Driven Everything!

(That’s a model, driving, get it?)

Pictures from Mars!Pictures from Mars!

• Um, did that require a PIM?

OK, Calm DownOK, Calm Down

• Got that out of your system?
• Have we seen this before?

Everything Old IS New AgainEverything Old IS New Again

• Refactoring design
• Object orientation
• Service orientation
• Legacy transformation
• Business process re-engineering

What is the Point?What is the Point?

• Reuse
• Interoperability
• Portability
• Maintainability
• Productivity
• Business Alignment

What is the Priority?What is the Priority?

Analysis, Design, Development,
Test & Deployment: 10%

Maintenance & Integration: 90%

Lesson: Software lifecycle costs are in the back end.

Where is the Current Focus?Where is the Current Focus?

• Initial development productivity
– Wizards
– Generators
– Even open-source

• Flash vs. form
– Demo programs
– Whiz-bang user interfaces
– GUI’s, even on the server

• MDA focusing where the pain is

Because Otherwise We’re All Just…Because Otherwise We’re All Just…

…roadkill on
the information
highway!!

We Must Be Able To…We Must Be Able To…

• Capture enduring design
• Separate capture of process from

engineering of implementation
• Automate the latter as much as possible
• Design-in agility

• The key ideas: enduring, automated and
more importantly agility

What is “Model Driven”?What is “Model Driven”?

• Graphical description of process
– Captures design with a minimum amount of

artifacts caused by the language
– Separates modeling and transformation
– Automates (somewhere from part to all)

creation of implementation artifacts (schemas,
deployment descriptors, programming
language text, scripts, etc.)

Haven’t We Seen This Before?Haven’t We Seen This Before?

• Well, yes: we have a clever name for tools
that take precise, more abstract
descriptions and transform them
automatically to precise, less abstract
(more concrete) descriptions

Clever Abstraction

Concrete Realization

Compilers!Compilers!

We Owe it all to John BackusWe Owe it all to John Backus

• This clever technology actually dates to
1954: SPEEDCODING and FORTRAN

John Backus’ PainJohn Backus’ Pain
• Coding for the IBM Selective Sequence

Electronic Calculator (SSEC) was painful
(especially due to the lack of index
registers and floating point)

• Backus considered programming “hand-to-
hand combat with the machine”

• His solution: SPEEDCODING, an
assembly-language aid to automate
translation of pseudo-index registers and
pseudo-floating point

The Birth of High-Level LanguageThe Birth of High-Level Language

• For IBM’s new “supercomputer” (the 704),
something better had to be done

• Backus’ team came up with the FORmula
TRANslating system (FORTRAN) in ‘54

• They called it automatic programming ☺

FORTRAN: Yes, it’s an HLLFORTRAN: Yes, it’s an HLL
• That was 1954, this is now
• Perhaps FORTRAN isn’t considered high-

level today, but it’s still hugely successful
• The key idea was to maintain precision but

raise the level of abstraction
• FORTRAN programmers worried about

the algorithm (well, more at least), while…
• …compiler developers worried about the

transformation.

Resistance Was FutileResistance Was Futile

• Most programmers “knew” that they could
write better code themselves (some were
right)

• Many more people became programmers
(but they were programming abstract
“FORTRAN machines,” not 704’s)

• The day parentheses died /

Modeling Isn’t NewModeling Isn’t New

• Just the next higher abstraction level

Code

Model

Assembly

And It’s FractalAnd It’s Fractal

• Why just three levels?
• CIM’s, PIM’s and PSM’s

Model

Model

Model

Model

Model

Everything Old is New AgainEverything Old is New Again
– All the problems Backus faced are with us:

• Is the generated code (artifact) as good as hand-
generated?

• How do you debug something you’ve never seen?
• Who owns, controls and tests the transformations?
• How do you audit models?

– Those of us who remember IBM 360’s
remember:

• Program in FORTRAN…
• …but debug a core dump.

Graphical Language Are ScaryGraphical Language Are Scary

• Real Programmers Don’t Draw

The first write-only language?

All the Same StructuresAll the Same Structures

• But of course all of the things we find in
the text world are in the graphical
modeling world too:
– Flexible
– Pluggable models (libraries)
– Standard models
– Patterns of usage

• We’ve just moved all of them up a level (or
more) of abstraction

Many of the Same ProblemsMany of the Same Problems

• Bad models are easy to build
• The wrong design does the wrong thing
• Still need some sort of development

methodology for consistency and quality
• Architecture is a good idea
• Training is required

Don’t Ignore the CostsDon’t Ignore the Costs
• This is a sea change for most development

teams
• Jobs may sort out differently than currently
• Audit requirements based on code have to be

updated
• Training is required; certification too
• Integration with current methodology is critical
• That old code just isn’t going away
• Don’t tell me you’ve never seen embedded

assembly code?

Modeling: Key ConceptsModeling: Key Concepts
• Emphasis on transformation techniques

– Based on a standard metamodeling framework; there
will be many metamodels, and plenty of modeling
langauges (including UML)

– Clear semantics, expressed consistently
– Potentially many levels of abstraction

• Enduring architectures are the focus
– Maintenance and integration aren’t pretty, but they

are the main job of IT
• Graphical languages as well as textual ones

– Some generic, some domain-specific, just like the
textual language world

Generation Isn’t EverythingGeneration Isn’t Everything
• Sometimes we’ll be able to generate all the

– Code
– Schemas
– Deployment descriptors

• Sometimes we won’t; but we’ll still have the
modeling values of
– Clear, sharable graphical expression
– Flexible transformation for agile retargeting
– An enduring description of the system

• Architecture matters (that’s why MDA)
• (That’s what you call engineering)

Developer Roles ChangeDeveloper Roles Change
• Developers become more productive, not

redundant, with focus on:
– Requirements Analysis
– Analyst/Designers
– Architects
– Analyst/Programmers
– Testers
– Maintainers/Integrators

• All sharing a language or set of languages
with a common underpinning

See http://www.omg.org/registration/Roles_in_MDA1.pdf

Who’s Doing ItWho’s Doing It
• Modeling has quietly changed the world

– Up to 1997, dozens of languages, dozens of tools, a
US$30MM market

– From 1997, an initial common language (UML), one
base metamodeling framework (MOF), dozens of
tools (Microsoft, Rational, etc.)

– From 2001, a sea change in IDE’s:
• Open Source (Eclipse NetBeans, Poseidon)
• Standardized (Adaptive, Codagen, Data Access, IBM, iO,

MID, Sun, many others)
• Even proprietary ☺

– Today a US$4B market

ConclusionsConclusions
• Every IDE supports model-driven today
• You need to look into it now
• Even if you plan to use a DSL, your organization

needs to understand standardized frameworks
(UML, MOF)

• Standards for infrastructure (MDA, UML, MOF)
exist; many vertical standards exist and more
are in development (that’s what DSL’s are!)

• The “real hacker” of tomorrow is the
transformation developer

• Don’t forget: people still write assembly code

OMG’s Take on ModelingOMG’s Take on Modeling

• A standardized architecture, MDA
– UML, MOF, XMI, CWM, QVT: the right

starting points for enduring, agile,
transformable systems

– Vertical-market standards (domain-specific
models) in many areas

• http://www.omg.org/mda/

One Final WordOne Final Word

“Not all evolution mandates revolution”
Leo McGarry
The West Wing

ConclusionsConclusions

• Ask me no questions, I’ll tell you no lies:
– OMG: http://www.omg.org/
– Me: soley@omg.org
– This presentation:

http://www.omg.org/~soley/mdr.ppt

