

Summary Introduction Challenges Design Issues for Web Applications Useful Abstractions Lessons Learned Conclusions

My Own Bias

- Web applications are "Advanced **Information Systems**"
- Solution to complex problems is done by a man-machine team, the part done by the machine is an Advanced Information System
- Advanced Information Systems allow knowledge representation:
 - "informally", when processed by the human being (hypertext/hypermedia)
 - "formally", when processed by the computer (Al, KBSs, DBs, IR, etc...)
 - Boundary between formal and informal is arbitrary and can be moved

My Own Bias

- Hypertext paradigm is used to
 - Help humans process informally represented knowledge
 - Integrate both representation
- Interactivity
 - Paradigm shift non-sequential, user-controled
 - Time dependent data

Summary Introduction Challenges Design Issues for Web Applications Useful Abstractions Lessons Learned Conclusions

Challenges Multi platform – hardware and software desktop PC's, Laptops, PDA's, Cell Phones, embeded devices, etc... in spite of standards, browsers don't always agree in implementation Support multi-disciplinary teams graphics designers content producers (text, audio, video, ...) marketing etc... Adaptable to user and environment

Design Issues for Web applications

- How do we characterize what tasks are to be supported?
- What are the information items?
- = How does one navigate and process information items?
- How are information items perceived?
- How do we take the user into account in the application itself?
- Can we reuse designs effectively?
- Can we be systematic in the process?

ICEIS 2005 - DS

11

Some premises

- Should be Model-based
 - allow abstractions to control complexity
- No single model solves it all!
- Should support various possible software architectures
- Should have a diagrammatic notation whenever possible
- Domain Specific Languages (DSLs) should be employed when possible

ICEIS 2005 - DS

Graphical Notations Are graphical notations really easier? Human being has special purpose hardware – cognitive apparatus Map visual properties onto domain properties shape

color

- position
- size
- Be consistent in the mapping
- Adequate choice of visual property still an art...
- Can't express everything graphically!

CEIS 2005 - DS

13

Some premises A good Web application is a good hypermedia application We will use OOHDM/SHDM as a reference http://www.oohdm.inf.puc-rio.br:8668

Summary Introduction Challenges Design Issues for Web Applications Useful Abstractions Lessons Learned Conclusions

Characterizing Tasks

- Several design methods employ Scenarios and Use Cases
- Web applications allow the user to navigate through information items using their navigational structure.
- Business logic is separate from navigation

ICEIS 2005 - DS

17

Characterizing Tasks

- User Interaction Diagrams (UIDs)
 - diagrammatic modeling technique
 - focus exclusively on the information exchange between the application and the user.
 - UIDs consider neither user interface aspects nor navigation aspects.
- UIDs support the synthesis of
 - conceptual model
 - navigation structure
 - interface elements

ICEIS 2005 - DS

We can define Navigation Contexts as sets of objects that have similar navigation properties Every navigation object is always accessed within a context Navigation Object Context Class


```
Navigation Contexts - Class Derived
■ Simple class based - Filter elements of a class:
■ "CDs whose genre is Samba".
■ Context = {e | P(e), e ∈ C}
■ Class based group - Parameterized set of simple contexts
■ "CDs by Genre"
■ Group = {Context<sub>genre</sub>},
        Context<sub>genre</sub> = {c | c.genre = genre, c ∈ CD}.
```

Navigation Context - Link Derived ■ Link based - based on an 1-to-n relationship. ■ "All CDs by Tom Jobim" ■ Context = {p | "Tom Jobim" IsAuthorOf p, p ∈ CD}. ■ Structural links are a particular case

Navigation Context - Link Derived ■ Link based group - Based on an 1-n relationship where the source instance can vary ■ "CDs by Author" ■ Group = {AuthorContext}, AuthorContext = {c | a IsAuthorOf c, p ∈ CD, a ∈ Person}

Abstract Widget Ontology

- ElementExihibitor exihibits some kind of content
 - Label
 - Text
 - Image
- SimpleActivator reacts to external events
 - Anchor
 - Button

ICEIS 2005 - DS

33

Abstract Widget Ontology

- Capturer/ArbitraryValue is able to capture some arbitrary input value
 - Single-line text box
 - Multi-line text box
- Capturer/PredefinedOptions the value captured is chosen from a given set
 - Radion button
 - Check box
 - Combo box

ICEIS 2005 - DS


```
Ruby / HyperDE-DSL
                                      Methods for persistence:
                                        find, find_all, find_by_*
                                         create, save, destroy
                 Native Classes
    schwabe = Professor.find_by_name
                              "Daniel Schwabe"
      Link access
      Methods
    hypermedia = ResearchArea.find_by_name
                                          "Hypermedia"
                         Link access
                          Methods
    schwabe.advises/each_do |student|
      unless
      student.works_in.include?(hypermedia)
         student.works_in << hypermedia</pre>
      end
                                         Link value
    end
                                         assignment
                                          methods
```


Design Rationale – Kuaba Ontology Vocabulary to represent design decision structure Artifact Idea Argument Decision USupport both reuse and group design Assumes designed artifact is described in a formal model

Navigation Patterns

- Help to record and convey good and recurrent navigation architectures
- Can be organized in catalogues and used as "books of experience"
- **Examples:**
 - Landmark (to access all important subsites)
 - News (to indicate new products)
 - Portal (to serve as a gateway to a set of services)
 - Set-Based Navigation

43

Domain-specific patterns

- In some domains, it is possible to find regular structures of problem-solution pairs
- Example: In e-commerce,
 - Opportunistic Linking (for keeping the user engaged)
 - Advising (for helping the user find products he may like)
 - Explicit Process (for helping the user understand application workflows)
 - Secure Bactrack (for maintaining consistency in navigation operations)

ICEIS 2005 - DS

Web Frameworks Frameworks are skeletons of applications in a domain Extending the notion of framework to the Web domain: Genericity in the conceptual model Genericity in the navigational model (generic nodes and contexts)

Uses OOHDM models and notations as a basis for defining frameworks A Framework is defined by a set of schemas, containing "hot spots", and instantiation rules Conceptual Class Schema Navigation and InContext Class Schema Context Diagram and Context Cards A Domain is characterized by a Conceptual Schema in OOHDM The only hot spot allowed are classes that are flagged as allowing specialization during the framework instantiation

Conclusions Progress has been made Challenging tasks remain Opportunity from Semantic Web Interaction with other areas

