

EIS Implementation Research: Assessment and Suggestions for the Future

Henri Barki

HEC Montréal

Plan

- An assessment of implementation research
 - The early years
 - The middle ages
- Suggestions for the future: two examples
 - A broader conceptualization of system use
 - A multi-level, multi-model approach
- Conclusions

Implementation research paradigms (Hevner et al., 2004)

- Design science
 - creation of intellectual and computational tools
- Behavioral science
 - study of individual, organizational, technological, and societal factors that influence implementation phenomena

Behavioral Research View of Systems Implementation

The

- Development
- Introduction
- Use

of IT-based solutions in order to improve organizational efficiency and effectiveness

Behavioral Implementation Research: The Early Years (1970s)

- The issue
 - developing and using OR/MS solutions and IS in organizations
- Major difficulty
 - lack of use
- Focus and Theoretical foundations
 - information requirements determination and useranalyst relations (Churchman and Schainblatt, 1965; Ackoff, 1967)

Behavioral Implementation Research: The Early Years (1970s)

- Research approach
 - Case studies and factor studies
- Findings
 - User participation
 - Top management support
 - User training
 - Other factors

- The issue
 - Developing, introducing and using different types of systems (e.g., MIS, DSS, ES, Case tools, MRP/ERP) in organizations
- Major difficulties
 - high project costs and delays, low levels of usage and user satisfaction
- Focus
 - user acceptance, project management (project risk and control)

Theoretical foundations

- TRA/TPB (Fishbein and Ajzen, 1975) and its variants: from TAM (Davis et al., 1989) to UTAUT (Venkatesh et al., 2004)
- Social cognitive theory (Bandura, 1977)
- Diffusion of innovations (Rogers, 1983)
- Media richness theory (Daft et al., 1987)
- Information processing theory (Galbraith, 1974)
- Control theory (Ouchi, 1979; Kirsch, 1996)
- Structuration theory (Giddens, 1984)
- Etc.

- Research approaches (Markus and Robey, 1988)
 - variance and process approaches
 - technological imperative; organizational imperative; emergent perspective
 - levels of analysis

Findings

- TAM to UTAUT: perceived usefulness, perceived ease of use, social influence, facilitating conditions
- TAM to UTAUT ++: cognitive absorption, trust, self-efficacy, computer anxiety etc.
- Management actions: user participation, top management support, user training, champions, managing conflict, managing risk
- Duality of technology, appropriation

Behavioral Implementation Research: taking stock

- Strengths:
 - Strong theoretical foundations
 - Methodological rigor and multiplicity
 - Some practical implementation guidelines
- Shortcomings:
 - Continued implementation problems in practice
 - Limits of variance and process approaches
 - What influences antecedents?

Behavioral Implementation Research: suggestions for improvement

- Improving our conceptualization of constructs
 - Realism and richness
- Avoiding theoretical silos
 - Combining findings from process and variance approaches
 - Multi-theory, multi-level models

Example 1: Expanding Our Conceptualization of System Use

- "a core variable in IS research" (Straub et al., 1995)
- "one of the most frequently reported measures of success" (DeLone & McLean, 1992)

MISQ & ISR 1992-2004)

Limitations of System Use Conceptualized as an "Amount"

- The multidimensional nature of system use (Doll & Torkzadeh, 1998)
- "Sufficient" level (Szajna, 1993)
- Mandated use (Brown et al., 2002)

- Task accomplishment as system use
- Adaptation activities as system use
- Learning activities as system use

(Based on a longitudinal, qualitative study of 12 users of an ERP implemented at a dynamic, multi-national organization; Users observed and interviewed following go-live, go-live plus 4-6 months, and go-live plus 12-14 months)

 Task accomplishment as system use Users' direct (i.e., hands-on) or indirect (i.e., via intermediaries) interactions with a system in the accomplishment of their organizational tasks

- Problem solving
- Decision rationalization
- Horizontal integration
- Vertical integration
- Customer service (Doll & Torkzadeh, 1998)

Assessed via amount, frequency, duration etc.

 Users' adaptation activities as system use

- User behaviors directed at changing or modifying a system, or how it will be deployed or used in an organization, i.e., reinvention behaviors (Rice & Rogers, 1980).
- Technology adaptation activities
- Operational adaptation activities
- Organizational adaptation activities

 Users' learning activities as system use
Information exchange and interaction behaviors (Papa & Papa, 1992), and self-directed information acquisition behaviors (Vandenbosch & Higgins, 1996)

- Communication activities
- Independent exploration activities

A Perceptual and Behavioral Framework of System Use

General Framework

Perception of Power

 How powerful/powerless an individual feels with respect to a system

- Related to
 - Perceived behavioral control (Ajzen, 1991)
 - Computer self-efficacy (Compeau & Higgins, 1995)
- Understanding the socially constructed nature of a system (Orlikowski, 1992)

Perception of Compatibility

- How compatible an individual perceives a system to be with the tasks to be accomplished
 - Related to
 - Task-technology fit (Goodhue & Thompson, 1995)
 - Relative advantage (Moore & Benbasat, 1991)
 - Perceived usefulness (Davis, 1989)

A Typology of User Perceptions and Behaviors

- Limitations of single-level, single-model approaches
 - Different theoretical foundations are used to explain phenomena occurring at different levels
 - Theoretical silos
 - Links between constructs at organizational, project, and individual levels are ignored

- Individual-level theories
 - e.g., TRA/TPB (Fishbein and Ajzen, 1975) and variants: from TAM (Davis et al., 1989) to UTAUT (Venkatesh et al., 2004)

A General, Individual-level model

- Project-level models
 - e.g., Managing Project Risk (Barki, Rivard, and Talbot, 2001)
 - DV: project success (cost, satisfaction)
 - IV's: external integration, internal integration, formal project management

- Organizational-level governance mode and contractual mechanisms models
 - e.g., Transaction cost theory (Williamson, 1985)
 - DV: market vs. internal procurement
 - IV's: economies of scale, asset specificity of investments, uncertainty, performance ambiguity of the transaction
 - e.g., Agency theory(Eisenhardt, 1989)
 - e.g., Resource-based view (Barney, 2001)
 - e.g., Incomplete contracts (Grossman and Hart, 1986)

- Individual-Project links
 - e.g., user participation and involvement with project external integration
- Individual-Organization links
 - e.g., perceptions of social influence, equity and conflict with goals of the parties (AT)
- Project-Organization links
 - e.g., resource availability (RBV) with project team expertise; project external integration with contractual mechanisms

Better Conceptualization of Constructs and Multi-level, Multimodel Approaches: Conclusion

- Potential benefits
 - Rigor- linking theoretical silos
 - Relevance- richer and more accurate capture of phenomena
 - New insights- antecedents of antecedents
- Challenges
 - Within- vs. between-researcher diversity
 - Time and publication constraints

Example 2: Analyzing an EIS Implementation via a Multi-level, Multimodel Approach

- Case study of an EIS implementation and reengineering project in a large insurance company: the Canstar project at GNLG
- Three attempts at implementation: two failures and a partial success

The Canstar Project

- Try #1: Harman
 - Objective: reengineering and integrating customer service processes via a two-level centralized support center (a customer is to interact with one person).
 - Fixed-price contract
 - Four months later: Harman's contract is cancelled.
 - GNLG's view: Harman's approach too aggressive and ill fitting to GNLG's organizational culture.
 - Harman's view: GNLG is too soft.

The Canstar Project

- Try #2: Iris
 - Objective: a call center, i.e. front office, and a claim assessment and processing center, i.e., back office.
 - Cost plus contract
 - Four months later
 - Significant anxiety and resistance
 - Numerous changes in system requirements
 - Several important system requirements still undecided
 - Major delay
 - Eight months later
 - Iris contract cancelled

The Canstar Project

Try #3: Internal Team and MHT Consulting

- Objective: same
- Partnership contract (MHT provides performance guarantees, partially assumes risk)
- New project structure
- Six months later
 - Both front office and back office operational
 - Improvements in key performance indicators (e.g., % of calls immediately answered)
- Ten months later
 - Performance indicators above industry average
 - Front office: OK
 - Back office: ?
 - Cost reduction objectives not reached